For office use only
T1
T2
T3
T4
\qquad
\qquad
\qquad

For office use only
F1
F2
F3
F4
\qquad
\qquad
\qquad
\qquad

Summary Sheet

To many of the world's roller coaster enthusiasts, a recurrent problem would be the decision of the next ride to experience. Indeed, as there are almost 4000 roller coasters across the globe, exactly which one should riders choose to go? To answer that question, we decided to create an algorithm that rates roller coasters objectively based on their statistical data, creating a comparable index and a ranking, effectively letting the roller coasters "speak for themselves."

Before we begin modeling, we analyzed the dataset in the provided spreadsheet and found out that there are large numbers of missing, noisy, or inconsistent values in the data, and the variables in the dataset are not in the same scale. To solve this, we first normalized all factors using the Box-Cox Transformation and then standardized them into a unified range of $[0,1]$. Then, we use mean imputation and regression imputation to fill in the missing values and filter out the noise.

The first part of our model establishes the concept of a Thrill Index. We propose that the more thrilling the roller coaster is, the more people will like it, and thus should be ranked higher. We constructed this part of the model by aggregating the factors that may contribute the experience of thrill during a ride: the height, maximum speed, G-force, inversions, and type of roller coaster.

The second part of our model establishes the concept of a Discomfort Index. We propose that the more discomfort the riders feel during or after a ride, the fewer people will like the experience, and thus the roller coaster should be ranked lower. This part of the model is constructed around factors that may contribute to the discomfort of the rider: G-force and inversions. We used logistic functions to simulate people's discomfort level caused by these two factors since they have non-linear relationships.

We think both the Thrill Index and the Discomfort Index are related to the overall experience of a rider, but none of them is comprehensive enough. Therefore, the third part of our model establishes the concept of a Comprehensive Index, which combines the effects of the Thrill Index and the Discomfort Index. The result of the Comprehensive Model is shown in the table below.

Rank	1	2	3	4	5	6	7	8	9	10
Name	$\begin{gathered} \text { Steel } \\ \text { Dragon } \\ 2000 \end{gathered}$	$\begin{gathered} \text { Fury } \\ 325 \end{gathered}$	Millennium Force	Fujiyama	Leviathan	Formula Rossa	Desperado	$\begin{gathered} \text { Intimidator } \\ 305 \end{gathered}$	Titan	Steel Vengeance

We also design an app named "Roller Ranker" for our model so that users can obtain our recommendations of highest-ranked roller coasters directly on their phone. In our app, users can view the default ranking, which is the one we ranked according to the Comprehensive Index, or they can customize settings concerning factors that may appear as more important to them, and our model will generate their personal recommendations using an adapted version of AHP (Analytic Hierarchy Process). Also, to improve the accuracy of the default rankings, we conduct a survey online about people's preferences over different factors and add weight to the factors of the Comprehensive Model.

Press Release

Team 8744 releases a new algorithm, ranking and mobile app for thrill seekers worldwide.

(Foshan, Guangdong, China - November 13, 2018) Team 8744 in the HiMCM Competition today announced the availability of their new objectivity-promising mobile application, Roller Ranker, to users of the Android and iOS platforms through digital marketplaces such as Google Play and App Store. By now, the utility application has gained comprehensive data on many of the world's most popular roller coasters and would continue to expand in time, according to the spokesman of Team 8744, demonstrating a constant commitment to provide knowledge to rookies and enthusiasts alike. The initiative is part of Team 8744 's mobile project, which focuses on reaching the millions of riders around the world whose primary method of Internet access is via a mobile device.
"Our team strives to remove bias in traditional methods of ranking determination, and for our customers around the world right now, having to refer to subjective experience and lack of factual science are the two major complications," says Hunter Zhang, CEO of Roller Ranker. "We created a comprehensive index for those looking to compare real information and enhance their riding experience, minimizing the time wasted on decisions and enabling the pursuit of the most efficient solutions."

Based on a large 300-entry dataset, Team 8744 determined the thrill, discomfort and overall experience riding on each of the individual roller coasters with statistical analysis. Each coaster was then rated against its competitors and ranked into a long list, presented in the application beside customization options for the user.
"We are delighted to bring our followers our latest achievement - the Ranker app that offers vital services with a significant outreach," says Edison Chen, Chief Writer and Head of Technology. "With the app completed, we could conclude the first stage of our work and start the provisioning of Data-as-a-Service on demand to users regardless of their geographic location, bringing a vast organized knowledge source to underserved communities."

The mobile application, in its design, would provide options for the user to either leave decisions to the core algorithms or provide their own preferences on roller coaster types, height, speed and so on.

For more information on Team 8744's Roller Rider and related algorithms, please visit their website, follow them on LinkedIn, YouTube and Facebook.

Content

1 - INTRODUCTION4
1.1 BAckGRound 4
1.2 Problem Restatement 4
2 - ASSUMPTIONS AND VARIABLES 4
2.1 ASSUMPTIONS AND JUSTIFICATIONS 4
2.2 VARIABLES 5
3 - DATA ANALYSIS, AND MISSING VALUE IMPUTATION 6
3.1 Data Description 6
3.2 Correlation Analysis 7
3.3 Missing Value Imputation 8
4 - MODEL PART 1: DATA STANDARDIZATION 9
5 - MODEL PART 2: THRILL INDEX 10
5.1 Incorporating the Feeling of Weightlessness 10
5.2 Incorporating Maximum Speed 11
5.3 Incorporating Acceleration 12
5.4 Incorporating Inversions 12
5.5 INCORPORATING THE TYPE OF ROLLER COASTERS 12
6 - MODEL PART 3: DISCOMFORT INDEX 14
6.1 Incorporating G Force 14
6.2 Incorporating Inversion Frequency 15
6.3 DISCOMFORT INDEX 16
7 - MODEL PART 4: COMPREHENSIVE INDEX 17
8 - APP: ROLLER RANKER 18
8.1 Goals and Concepts of the App 18
8.2 Potential Users and App Design 19
8.3 Incorporating customized settings into the Comprehensive Model 20
Step 1: Preparing the Data 21
STEP 2: Checking for Inconsistencies 22
Step 3: Calculating the Weight Vector 24
Step 4: Output 25
9 - ADDING WEIGHTS TO THE COMPREHENSIVE MODEL 25
10 - RESULTS 27
10.1 Comparison with Other Rankings Systems 27
11 - EVALUATION 29
12 - REFERENCES 30
APPENDIX 31
Appendix A: The Prototype of Our Application 31
Appendix B: Code 32
Appendix C: Our Data Spreadsheet 36
Appendix D: SURVEY Results for part 9 39

1 - Introduction

1.1 Background

Roller coasters are becoming one of the most symbolic landmarks in the eyes of visitors. The number of visitors to amusement parks and the number of roller coasters built every year arrives at unprecedented peaks, and many new coasters break records that those a decade ago would never even have a chance of achieving. Meanwhile, some enthusiasts miss the classic wooden feeling that differs from modern steel coasters, some challenge themselves to high drops and speeds, and seeking for the best personal experience is increasingly essential for visitors and potential riders. Current rankings about roller coasters are primarily based on subjective input with limited reference of objective input such as inversions and peak speed, which may lead to new visitors gaining biased conclusions.

Therefore, for the aforementioned new visitors' sake, we are developing a ranking system that looks at operational roller coasters worldwide in an objective stance in order to give a credible score and ranking based on calculations upon the roller coasters' data.

With the results, we evaluate the feasibility of our model, analyze its objectivity and statistical validity, and we demonstrate our model and the app in a news release for publishers worldwide, establishing a benchmark for future reviews and recommendations.

1.2 Problem Restatement

The inherent challenge in providing an objective ranking of roller coasters worldwide lies analyzing all data about all roller coasters. As current rankings rely heavily on subjective measurements, we have to differ from them and develop a mathematical model for an objective ranking system. This model would have to consider the most important factors that contribute to the experience of riding roller coasters, and these should all be present in the given dataset. The model then should be compared with current rankings. Finally, we must design a user-friendly app that helps people find roller coasters that they prefer to ride and compose a news release to highlight our model and app.

2 - Assumptions and Variables

2.1 Assumptions and Justifications

- Assumption 1: External factors that are not related to the roller coaster is ignored when different roller coasters are compared.
- Justification: Though the external factors (weather, infrastructure of the amusement park) may affect riders' overall experience, they do not reflect the experience of the ride itself.
- Assumption 2: The imputed data approximates the real data of the roller coasters.
- Justification: There are a lot of missing data in the provided dataset, and we use imputation to fill them in. We made this assumption because without the full data, valid comparison between roller coasters cannot be made.
- Assumption 3: People may feel discomfort after a ride.
- Justification: Although people come to ride roller coasters to experience the thrill, if a ride is too extreme, the person might feel sick. This is because roller roasters simulate an environment that people are not used to be in.
- Assumption 4: People start to feel discomfort when G-force approach 5 and inversion frequency approaches 0.133 inversions per second.
- Justification: These values are selected based on existing studies which can be found in the references.
- Assumption 5: The database of our application's server is well protected so that the integrity of our data is preserved.
- Justification: We assume only we can change the data in the server, so that no malicious actions are performed against our data.

2.2 Variables

We use not capitalized Latin or Greek letters for denoting factors of a roller coaster. It is important to note that all of these variables have been transformed into the same scale, which is explained in Part 4.
$l=$ the length of a roller coaster.
$\delta=$ the drop of a roller coaster.
$t=$ the duration of a ride of a roller coaster.
$n_{I}=$ the number of inversions of a roller coaster.
$\omega=$ the inversion frequency of a roller coaster.
$b_{T}=$ the numeric score deduced by the Borda point of the type of a roller coaster.
$h_{\max }=$ the maximum height of a roller coaster.
$s_{\max }=$ the maximum speed of a roller coaster.
$g_{\max }=$ the maximum magnitude of G Force of a roller coaster. Note that G Force is actually an acceleration.

We use bold, capitalized letter for denoting matrices.
$\boldsymbol{A}, \boldsymbol{B}=$ examples of comparison matrix.
We use bold, not capitalized letters for denoting vectors.
$\mathbf{0}=$ the zero vector.
$\boldsymbol{g}=$ the acceleration caused by the gravitational force on the earth surface.
$\boldsymbol{w}=$ the unadjusted weight vector of a user's comparison matrix.
$\boldsymbol{w}^{\prime}=$ the adjusted weight vector of a user's comparison matrix.
$\boldsymbol{w}_{\mathbf{c}}=$ the weight vector calculated from the survey.
We use capital letters for denoting indices.
$T I=$ the Thrill Index.
$D I=$ the Discomfort Index,
where $D I_{g}=$ the discomfort index contributed by G-force,
and $D I_{\omega}=$ the discomfort index contributed by inversion frequency.
$\mathbb{C}=$ the Comprehensive Index.
$C I=$ the Consistency Index.
$R I=$ the Random Index.
We define the set of terms we incorporate in our model's formula as \mathcal{F}, and we assign each term an index as shown in the table below:

Factor	$h_{\max }$	$s_{\max }$	$g_{\max }$	ω	b_{T}	$-D I_{g}$	$-D I_{\omega}$
Index of it in \mathcal{F}	1	2	3	4	5	6	7

3 - Data Analysis, and Missing Value Imputation

3.1 Data Description

The dataset that we will use throughout this text to develop our models is a subset of operational roller coasters whose height, speed, and/or drop are above the average of worldwide operating coasters. There are 300 entries in the dataset, each with thirteen (13) factors. As shown in table 3.1, there are 9 numerical factors, 3 categorical factors and one binary factor. Also listed are the unit or values each factor is calculated in, if applicable.

Numerical Factors	Year Opened Height (in feet) Speed (in mph) Length (in feet)
	Number of Inversions Drop (in feet) Duration (in minutes: seconds) G Force Vertical Angle (in degrees)
	Construction Type Status
	Inversions (YES or NO)

Table 3.1: An overview of the variables in the dataset
We also calculated the mean, standard deviation, and other statistics of the numerical data to interpret the dataset better (missing values are not included in the calculation), the result of which is summarized in table 3.2.

	Year/Date Opened	Height (feet)	Speed (mph)	Length (feet)	Number of Inversions	Drop (feet)	Duration(sec)	$\begin{gathered} \text { G } \\ \text { Force } \end{gathered}$	$\begin{aligned} & \text { Vertical } \\ & \text { Angle } \\ & \text { (degrees) } \end{aligned}$
$\begin{gathered} \text { \# of } \\ \text { Observations } \end{gathered}$	300.00	299.00	296.00	295.00	300.00	141.00	223.00	82.0	91.00
Mean	2000.66	135.52	59.68	3149.94	2.22	153.18	126.87	4.3	74.74
Standard Deviation	13.16	66.40	16.25	1454.48	2.60	73.85	47.35	0.6	17.94
Minimum	1924.00	28.96	28.00	215.00	0.00	27.00	28.00	2.8	45.00
25\%	1996.00	98.00	49.70	2260.50	0.00	95.00	96.00	4.0	60.00
50\%	2002.00	116.50	55.90	3024.80	1.00	144.00	120.00	4.3	77.00
75\%	2009.00	169.00	70.00	4008.80	4.00	205.00	154.50	4.7	90.00
Maximum	2018.00	456.00	149.10	8133.20	14.00	418.00	325.00	5.2	121.00

Table 3.2: The statistics of the numerical data

3.2 Correlation Analysis

Correlation analysis of the dataset is a very important step to do before the modeling because in the process of creating an objective model, no single factor of a roller coaster should be emphasized more than any other. However, we can predict that several factors in the dataset are highly correlated. For example, height and drop conveys the same aspect of a roller coaster: the feeling of weightlessness; Duration and Length may also be correlated, as well as the Number of Inversions and G force.

Figure 3.1 Correlation heatmap

To find out the exact correlation between factors, we plot a correlation heatmap using the Pearson correlation coefficient (r value) for the dataset, as shown in figure 3.1.

In the figure, it is shown that some of the factors in the dataset are highly correlated. For example, Height and Drop having a correlation coefficient of 0.95 and Speed and Drop having a correlation coefficient of 0.97 both indicates near perfect positive linear relationships. Also, Length and G Force exhibits a high possibility of an inversely proportional relationship. In the process of our analysis, prominent relationships of the graph are being considered in the modeling process, so all factors of a roller coaster are emphasized equally, preserving objectivity for our models.

3.3 Missing Value Imputation

There are a lot of missing data in our dataset, for example, 53% of the dataset is missing the Drop value, as shown in table 3.3.

	Year Opened	Height	Speed	Length	\# of Inversions	Drop	Duration	G Force	Vertical Angle
\% of Missing Values	0	0.3	1.3	1.67	0	53	25.67	72.67	69.67

Table 3.3: The table shows the percentage of missing values in the dataset
For factors such as height, speed, and length, which have a very low percentage of missing values, we used mean imputation to fill missing values.

However, for factors such as drop, duration, G force, and vertical angles, simple imputation with an arithmetic mean would not be appropriate because the percentage of missing values is too big that it will undermine the dataset.

Thus, we need another approach to recover these data. According to the correlation matrix shown in figure 3.1, the factors height and drop are highly correlated, with a correlation coefficient of 0.95 ; Duration and length also shows a strong correlation, with an r value of 0.62 ; Gforce is related to length, with an r value of -0.61 ; Vertical angle is correlated with G force as well, with the coefficient at 0.56 . We plotted a linear regression plot between these factors to visualize this relationship. We determined that regression imputation, which approximates the missing data with other factors in the dataset, will be an effective approach to fill in the missing values.

Figure 3.2: Linear regression plot for Height, Drop, Duration, Length, G force, and Vertical Angle
Since the factors with a high percentage of missing data are correlated with the factors with a small
percentage of missing data, we can impute the missing values using the least squares linear regression line, as shown in figure 3.2. With all the data filled, we can move on to our model.

4 - Model Part 1: Data Standardization

The dataset contains information of many factors; however, they are not in the same scale. In order to use the data in our model, it is crucial to give each value in the data a standardized score, so that they will be in the same range. To transform all factors into the same scale, it would be reasonable to standardize each factors according to its percentile position among other values of that factors.

Figure 4.1: The distribution of eight numerical factors
However, the distributions of values of the numerical factors in the dataset are skewed, as shown in figure 4.1. To transform our skewed data into a normal distribution, Box-Cox transformation is applied. The effect of which is shown in figure 4.2.

Figure 4.2: The distribution of eight numerical variables before Box-Cox transformation (blue) And the distribution of eight numerical variables after Box-Cox transformation (orange)

After converting the skewed data distribution into a normal one, we used the cumulative distribution
function of normal distributions to calculate the percentile position of all values in the dataset. With such transformation, all the values in our dataset will have the same range, from 0 to 1 inclusive. These transformed values can then be used in the following parts of our model.

5 - Model Part 2: Thrill Index

To create a descriptive roller coaster ranking system based only on numerical and descriptive specification data, we deliberated on methods of comparing different roller coasters, and concluded that the logical way is to develop a quantitative algorithm comparing how much thrill each of them brings to a rider. Theoretically, the more thrilling a roller coaster is, the more people will rate it higher, and thus its rank should be higher in our model. We can then stand on a statistical viewpoint and consider the aggregate effects of the rider population's opinions on an index evaluating the thrill of each roller coaster. Therefore, the goal of the first part of our model is to rank roller coasters according to the level of thrill they bring onto the average rider.

After researching into both objective sources such as Wikipedia and Encyclopaedia Britannica and subjective sources like Quora and roller coaster enthusiast forums, we concluded that there are several major factors overall that contributes to the experience or sensation of thrill:

- The feeling of weightlessness,
- The maximum velocity,
- the maximum G-force experienced,
- Inversions, and
- The type of roller coaster.

As these factors are statistically independent of each other, we would develop a formula that performs accumulation of each factor into a comparative index, namely TI, the Thrill Index, in the following text.

5.1 Incorporating the Feeling of Weightlessness

One of the most important reasons that people would want to ride a roller coaster is that the feeling of weightlessness when they are dropped from a high position is thrilling. Weightlessness or decreased weight is experienced when the acceleration downwards approaches $9.8 \mathrm{~m} / \mathrm{s}^{2}$ or $32.17 \mathrm{ft} / \mathrm{s}^{2}$, the gravitational acceleration near the surface of the earth, and the formula for weight in this scenario, $m g$ - ma, approaches zero. The higher the roller coaster is designed, the longer a person on that roller coaster will be able to drop, experiencing larger downwards acceleration and thus weightlessness, and the more thrilling the experience.

In the provided dataset, there are two variables that should be directed related to the feeling of weightlessness: height and drop, both denoting the maximum value experienced in one trip on the roller coaster. However, when we plotted the two variables against each other in a scatterplot and drew the line of best fit, we discovered that these two variables are very highly correlated ($\mathrm{r}=0.95$), as demonstrated in figure 5.1.

Figure 5.1 Scatterplot between height and drop

Since we can use any of the two variables to estimate the level of weightlessness that a rider is going to feel when falling, we decided to use the variable height and exclude the variable drop, as there is only a mere 1.67% of all entries in the dataset has the variable height missing, while an overwhelming 53% of all entries miss the variable drop in the dataset. And because of the high correlation between these variables, we can use a roller coaster's height to predict its drop.

Thus, the elementary formula for the thrill index is equal to the maximum height of the roller coaster.

$$
\begin{equation*}
T I=h_{\max } \tag{5.1}
\end{equation*}
$$

5.2 Incorporating Maximum Speed

After taking the feeling of weightlessness into account, we think it is reasonable that the maximum speed a roller coaster train is capable of reaching during one trip is also related to the feeling of thrill. For an analogy, people experiencing the thrill of putting their head outside of their cars' window when they are on a high-speed road such as a freeway is similar to the experience of riders on a roller coaster. The seemingly dangerous actions give people the sensation of thrill, and the feeling of air blowing right at people's face maximizes the sensation and produces excitement, which is where screaming aloud seems reasonable on a roller coaster. Therefore, the faster the roller coaster goes, the more thrilling the experience will be, and the thrill index should account for this factor as well.

So, the formula is adjusted into the following:

$$
\begin{equation*}
T I=h_{\max }+s_{\max } \tag{5.2}
\end{equation*}
$$

5.3 Incorporating Acceleration

People come to an amusement park and ride a roller coaster to experience what they cannot in daily life, and vertical acceleration greater than $9.8 \mathrm{~m} / \mathrm{s}^{2}$ or $32.17 \mathrm{ft} / \mathrm{s}^{2}$, the natural gravitational acceleration of free fall near the surface of earth (denoted \boldsymbol{g}), is sure to be one of these experiences. This greater acceleration is usually denoted in convention by the value of g-force, a scalar multiplier on the value of \boldsymbol{g} that results in a downward vector of acceleration ($g \stackrel{\text { def }}{=} \frac{\boldsymbol{a}}{\boldsymbol{g}}$). Therefore, the higher the G force the roller coaster exerts on the rider, the higher the vertical or downwards acceleration is, and the more thrilling the experience becomes.

$$
\begin{equation*}
T I=h_{\max }+s_{\max }+g_{\max } \tag{5.3}
\end{equation*}
$$

5.4 Incorporating Inversions

After incorporating the physical traits and maximums of roller coasters, we propose that the design of the track of each roller coaster can also influence the overall experience of the rider, and should be viewed from a statistical standpoint. An effective way to increase the experience of thrill is increasing the number of inversions, which is when the rider and the train is positioned upside-down, usually at the top of a vertically circular track, from a ground perspective. This is another experience people do not encounter in daily life, and many would come to ride a roller coaster for it. Numerically and theoretically, the more inversions there are, the more thrilling a roller coaster ride becomes.

$$
\begin{equation*}
T I=h_{\max }+s_{\max }+g_{\max }+n_{I} \tag{5.4}
\end{equation*}
$$

However, when we are comparing two or more roller coasters having the same number of inversions, we propose that the coaster with a higher number of inversions per unit time should make the ride more intense, and thus more thrilling. Therefore, we divide the number of inversions of each roller coaster track by the one-time duration of its ride to get the inversion frequency ω of the roller coaster.

$$
\begin{equation*}
\omega \stackrel{\text { def }}{=} \frac{n_{I}}{t} \tag{5.5}
\end{equation*}
$$

And so, the formula for the thrill index of each roller coaster should be readjusted to be the following, where the inversion frequency replaces the number of inversions:

$$
\begin{equation*}
T I=h_{\max }+s_{\max }+g_{\max }+\omega \tag{5.6}
\end{equation*}
$$

5.5 Incorporating the type of roller coasters

Finally, we should consider the many types of roller coasters that exists, some constructed specifically to attract enthusiast riders, and many of which are unique in experience. Thus, the type of the roller coaster contributes to the thrill a lot more than many would think. It is part of the design of the roller coaster, and as it affects each car in the roller coaster, goes on to affect the experience and thrill of the rider directly.

$$
\begin{equation*}
T I=h_{\max }+s_{\max }+g_{\max }+\omega+b_{T} \tag{5.7}
\end{equation*}
$$

But then, the type of roller coasters is a categorical variable, not numerical, so the calculation into the thrill index cannot be accomplished. So, we decided to convert the categorical variable into a numerical one, one that we could quantify based on values, while being as objective as possible. Arbitrary numbering is possible, but it would reduce the objectivity of our index, and so we decided to find the popularity of each type of roller coaster with samples statistically.

Figure 5.2: Data about the type of roller coaster are collected from websites

To determine the overall popularity of each type of roller coasters, we searched for existing data on the Internet that was voluntarily answered on forums (Reddit and CoasterForce) and collected a valid sample of 46 answering under the threads in a spreadsheet.

And so, we turned to voting theory, using the extended Borda Count method to determine the final

Figure 5.3: This figure shows the poll of different users on internet, rank from highest to lowest.
ranking of types of roller coasters. In the extended Borda Count method, each position on an answer is assigned points, 1 for the last place to 7 for the first place in this instance. The points are tallied for each type of roller coaster, and is sorted to determine the final ranking.

For Borda points to fit in the range of other data, we scale them into numbers from 0 to 1 by dividing the Borda points of each type by 264, the Borda points of the roller coaster that has a rank of number one, namely the type Inverted, as shown in table 5.1.

Rank	Types of Roller Coaster	Borda Points	Contribution to Thrill Index (0-1)
1	Inverted	264	1
2	Flying	186	0.704
3	Wing	178	0.674
4	Sit Down	156	0.591
5	Floorless	155	0.587
6	Stand	64	0.24

Table 5.1: The table shows the conversion of the type of a roller coaster to a numerical value using Borda Count Method

This ranking method naturally conforms to the Monotonicity Criterion, and in this instance, with a relatively large number of types, satisfies the Majority and Condorcet Criterion.

Note that in order to make the answers on the websites conform to our defined types of roller coasters, the type 'Floorless' is changed to 'Suspended', type 'Dive' is combined with 'Sit Down' and other small types are ignored as preferences are transitive.

6 - Model Part 3: Discomfort Index

It is a common sight to see people with a pale face right after a roller coaster ride - that is because roller coasters stimulate an experience that our body is not used to. After considering the thrill experienced during a roller coaster ride as one of our major ranking criteria, we propose the idea of accounting for the level of discomfort as well. A roller coaster may be extremely thrilling to ride, but if people experience discomfort on the trip, the overall experience of the ride can be seriously degraded.

After researching into the subject of discomfort on Wikipedia and Quora, we located two variables in the dataset that may contribute to a person's feeling of discomfort -G force and inversions.

6.1 Incorporating G Force

Although a higher G force could emphasize the thrill of the overall experience of a roller coaster ride, it is also a major factor that causes discomfort in a typical roller coaster ride. Generally, a higher G force causes the discomfort to be greater on average for a rider.

According to previous studies, a human can tolerate an acceleration up to 4 G on average without feeling great discomfort. Above this threshold, symptoms like grey-out or even black-out are often reported by those untrained. Grey-out causes a person's vision to lose hue, tunnel vision causes a person to lose peripheral vision, and black-out causes a complete loss of sight. Thus, G-force should be considered a factor that contributes to the probability of a rider experiencing discomfort.

We propose that the relationship between the probability of discomfort and G force is nonlinear, as most humans do not feel much discomfort from 1 G to 4 G acceleration, while it arises rapidly as G force approaches 5 and 6 G .

Therefore, we decided to use a logistic function, as shown in formula 6.1, to approximate the probability that the average rider will feel discomfort at a certain G force. The range of the predicted
probability should be between 0 and 1 inclusive because other variables in the dataset are scaled this way as explained in part 4.

$$
\begin{equation*}
D I_{g}=\frac{1}{1+e^{45\left(0.88-g_{\max }\right)}} \tag{6.1}
\end{equation*}
$$

The parameter of the logistic regression is set with our assumption that the average rider can endure 5 G acceleration in average but cannot endure 6 G acceleration. As existing studies shows, 50% of the population cannot endure 5 G and 99.9% of the population cannot endure 6 G . Thus, we first transformed the critical values (5 G and 6 G) into the standardized scale, and then used them to determine the logistic function. The resulting points are $(0.89,0.5)$ for 5 G and $(0.99,0.99)$ for 6 G , and the shape of the logistic function is shown in figure 6.1.

Figure 6.1: The graph of $D I_{g}$

The discomfort probability function starts with a long, continuous horizontal line when the G force, plotted in the horizontal axis, increases from 0 to 4, indicating very little discomfort, then arises sharply as it approaches 5 . When G force exceeds 6 , about all riders should feel sick and the probability of discomfort gets near 1 (the maximum).

6.2 Incorporating Inversion Frequency

Another factor that may cause discomfort during a roller coaster ride is the number of inversions. Many inversions in a single roller coaster ride causes the balance system inside the human brain to malfunction, leading to motion sickness and the feeling of discomfort. Generally, the more inversions there is, the more likely discomfort occurs for a rider.

When we are comparing two roller coaster rides with the same number of inversions, the one with a shorter duration will have a higher probability of generating more discomfort for the rider, since the average inversion frequency is higher on that ride. Remind that

$$
\omega=\frac{n_{I}}{t} .
$$

Frequent inversions can impair the balance system of human further, and may lead to complete loss of spatial vision and vomiting. The more frequent the inversion is, the dizzier people might feel. According to previous studies, about 90% of all people will have a strong feeling of dizziness when the inversion frequency is close to 0.133 inversions per second.

$$
\begin{equation*}
D I_{\omega}=\frac{1}{1+e^{30(0.85-\omega)}} \tag{6.3}
\end{equation*}
$$

Similar to our approach to G force, we use a logistic function to approximate the probability of discomfort. The range of the function is also from 0 to 1 inclusive. As the aforementioned study shows, the discomfort probability increases rapidly when inversion approaches 0.133 inversions per second [7], which after the Box-Cox transformation, described in part 4 , is nearly equal to 0.922 .

The resulting shape of the figure is as follows.

Figure 6.2 The graph of $D I_{\omega}$

6.3 Discomfort Index

In conclusion, the discomfort index is equal to the sum of G-force probability of discomfort and the probability of inversion frequency discomfort, and its formula would be

$$
\begin{equation*}
D I=\frac{1}{1+e^{45(0.88-G)}}+\frac{1}{1+e^{30(0.85-\omega)}} \tag{6.4}
\end{equation*}
$$

As shown below, we also plot this function in a 3D cube view for a better visualization. The discomfort is expressed in the plot both by the vertical axis and the colors of the rainbow, from purple representing the least discomfort and red representing the most.

Figure 6.3: The 3D cube view plot of DI function

7 - Model Part 4: Comprehensive Index

As we have presented in the part 2 of this model, people come to ride a roller coaster in search of the "thrill". The more thrilling the experience, the larger possibility that the rider will like it. We have then analyzed the many factors that contribute to this experience of thrill:

- The feeling of weightlessness,
- The maximum velocity,
- the maximum g-force experienced,
- Inversions, and
- The type of roller coaster.

And in model part 2, the index measuring thrill is the aggregate of these factors, as in the formula:

$$
\begin{equation*}
T I=h_{\max }+s_{\max }+g_{\max }+\omega+b_{T} \tag{7.1}
\end{equation*}
$$

As discussed in the third part of the model, the feeling of discomfort arises from the maximums of G force and Inversion Frequency, and this also affects the overall experience of a roller coaster ride. The formula to calculate discomfort takes both variables into account:

$$
\begin{equation*}
D I=\frac{1}{1+e^{45\left(0.88-g_{\max }\right)}}+\frac{1}{1+e^{30(0.85-\omega)}} \tag{7.2}
\end{equation*}
$$

The higher the thrill index is, the larger possibility that riders will like it, but the higher the discomfort index is, the more likely that people will regret taking the ride. Both parts of the model aim to measure the experience of riding a particular roller coaster, but neither have taken all factors into account. Certainly, it is undesired that our ranking recommends roller coasters that simply have the highest drop, fastest speed, or the greatest number of inversions, while people feel horrible after riding it; equally undesired is that our ranking recommends people to ride roller coasters that does not create any discomfort but is not thrilling at all.

Therefore, an objective and comprehensive ranking system should take both sides into account with the equation

$$
\begin{equation*}
\mathbb{C}=T I-D I \tag{7.3}
\end{equation*}
$$

which expands to

$$
\begin{align*}
& \mathbb{C}=h_{\max }+s_{\max }+g_{\max }+\omega+b_{T}-\frac{1}{1+e^{45\left(0.88-g_{\max }\right)}}-\frac{1}{1+e^{30(0.85-\omega)}} \\
& =\sum_{i=1}^{7} \mathcal{F}_{i} \tag{7.4}
\end{align*}
$$

where \mathbb{C} is the comprehensive index that measures the experience on any selected roller coaster.

By creating the equation as we did so, it is possible to penalize roller coasters that either gives excess emphasis to the experience of thrill or neglects the discomfort of the rider, or coasters that is incapable of thrill and emphasizes comfort overmuch.

The Comprehensive index give a more objective and comprehensive reference for the comparison of different roller coasters and offers insight into our rank of Top 10 Roller Coasters in the world. And as we aim to create an authoritative ranking that appeal both to roller enthusiasts and new riders, we can encourage roller coaster designers not to only go after the physical limits of a roller coaster (for example, speed, drop, and inversion frequency), but consider also the experience of discomfort the design might have on the average rider.

However, in this part, we omitted the relative importance of these factors affecting the final ranking (for example some might think the number of inversions that a roller coaster has is more important than its height, while others might think the opposite). To consider the relative importance, a weight should be added to each factors in the formula.

In order to take the relative importance between these factors into account of the Comprehensive Model, we added weights to each factor, which is explained in part 9.

8 - App: Roller ranker

After the construction for our model of ranking roller coasters is complete, for the convenience of both potential riders seeking for their next ride and enthusiasts seeking for thrill, we decided that it is necessary to design a mobile app named Roller Ranker so that they can receive the recommendations of our model directly in their phones.

8.1 Goals and Concepts of the App

1. User-Friendly

Our app should be designed to be as friendly to the user as possible, in ways that people will find it easy to use and understand.
2. Personalized

In our app, the users should be able to adjust settings according to their personal preferences
so that the app offers a customized recommendation for all individual users (for example, some might think the number of inversions that a roller coaster has is more important than its height, while others might think the opposite).
3. Self-improving

Our app should be able to learn the preference of users for different factors in our model automatically, so that our default recommendation will become more accurate in time.

8.2 Potential Users and App Design

Before designing the functions of the app, we shall first analyze the different groups of potential users of our app: those that are new to roller coasters, those who have ridden roller coasters before, and those who are roller coaster enthusiasts.

Those who are new to roller coasters might simply want our recommendation of roller coasters, which is based on our default ranking, as they do not know much about roller coasters.

Those who have some experience with riding roller coasters should know that some roller coasters can be extreme and causes discomfort (such as dizziness or grey-out), and others can be too boring and lacks excitement. Therefore, they may want to adjust the settings so that our model can recommend roller coasters that is perfect for them.

For Roller Coaster Enthusiasts who may have knowledge of every aspect of roller coasters, a very flexible customization of the settings may be desired so that they can find roller coasters that fits their specific preferences. For example, some enthusiasts may think the number of inversions that a roller coaster is more important than its height, and our app should let them express the preference.

Type of Users	What we offer
Beginner to roller coasters	Default Recommendation
Experienced riders	Customized setting for the weights of Thrill Index and Discomfort Index in the Comprehensive Model
Roller Coaster Enthusiasts	Customized setting for weights of all factors in the Comprehensive Model

Table 8.1: The table shows various offers to different type of users
To accommodate the need of those different types of users, our app should offer a default recommendation for beginners (ranked by the output of the Comprehensive index), an adjustable weight for the Thrill index and Discomfort index in our model for those who have some experience in riding roller coasters, and adjustable weights for all factors for Roller Coaster Enthusiasts.

Setup Options

Figure 8.1 Prototype of "Roller Ranker"
Left: Front page of the app
Middle: 3 options for setup
Right: The personalized ranking

8.3 Incorporating customized settings into the Comprehensive Model

We have already developed a Comprehensive Model that takes many factors or variables into consideration. In that model, we assume that people will view each factor as having equal importance to them, so the default weight for each variable is set to be the same. However, as we have analyzed in part 8.2, different users might think of some factors as being more important to them than others. Therefore, we should incorporate the users' setting into the Comprehensive Model so that our recommendation is flexible to their choice.

8.3.1 Basic Customization: Thrill Index vs Discomfort Index

For the basic customization algorithm, in a screen that asks for the user's preference, a value x between 1 to 9 is retrieved from users' input. The value x reflects the user's absolute preference between Thrill and Comfort. We transform this value using $\alpha=\frac{x}{5}$ and $\beta=1-\frac{x}{5}$ and apply it in our Comprehensive Model formula for finding out a weighted index for our ranking. Thus, the formula based on this basic customization would be:

$$
\begin{equation*}
\mathbb{C}=\alpha \cdot D I-\beta \cdot T I \tag{8.1}
\end{equation*}
$$

8.3.2 Advanced Customization: Detailed weights

For a more advanced customization process, in which a user can adjust weights for each individual factor in the Comprehensive Model, the user's comparative preferences over each factor are collected in the Advanced Customization application interface.

This means that the method we use for basic customization, which handles an absolute preference,
cannot be applied here to comparative ones. Thus, we shall refer to the Analytic Hierarchy Process (AHP) method which uses relative importance of criteria and a pairwise comparison matrix to sort possible solutions to an operational problem. However, we only need a part of AHP, the Criteria layer, for our model. This is because the pairwise comparisons layer can be replaced by the similar scaling and normalization process in part 4.

We now use an example of the relative preferences of Katie, a roller coaster enthusiast and user of our app, on factors of roller coasters to illustrate how the modified method give the absolute weight of the factors. By these absolute weights, we can determine the preferences of the user exactly and recommend roller coasters by factors with larger weights.

For the sake of simplicity in our discussion, we first assign a number to each factor in the formula:

Number	1	2	3	4	5	6	7
Factor	$h_{\max }$	$s_{\max }$	$g_{\max }$	ω	b_{T}	$D I_{g}$	$D I_{\omega}$

Table 8.2: The table shows the number corresponding with specific factor
Using these numbers, we can denote the various aspects of the matrices in our following discussion with ease.

Step 1: Preparing the Data

First, users input their comparative preference for two factors at a time in our app. For example, Katie can slide the slider from 1 to 9 to indicate their comparative preference between the factors height and speed, as illustrated in figure 8.2.

Setting 1

Which one is more important to you? Slide the Slider please.

Figure 8.2: A sample setting page in the Advanced Customization setting
If Katie chose the values in the following table,

	$h_{\max }$	$s_{\max }$	$g_{\max }$	ω	b_{c}	$D I_{g}$	$D I_{\omega}$
$h_{\max }$							
$s_{\max }$	5.5						
$g_{\max }$	6	5.25					
ω	6.5	5.5	5.17				
b_{c}	7	5.75	5.33	5.125			
$D I_{g}$	7.5	6	5.5	5.25	5		
$D I_{\omega}$	8	6.25	5.67	5.375	5.9	5	

Table 8.3: The table shows the weight choosing by Katie

Then Katie's inputs can be transformed into values that can be used in the AHP by the formula

$$
x^{\prime}=\left\{\begin{array}{c}
2 x-9, x \geq 5 \tag{8.2}\\
\frac{1}{11-2 x}, x<5
\end{array}\right.
$$

To calculate the relative weight for n different factors, a 7×7 comparison matrix A must be made to contain the user's relative preference data, produced following these rules:

1) $\boldsymbol{A}_{i j}=\frac{1}{A_{j i}}$ (Rule of Reciprocity)
2) The value in matrix $\boldsymbol{A}_{i j}$ represents the comparative importance between factor i and factor j. If factor i is equally or more important when compared to factor j, the scale of $\boldsymbol{A}_{i j}$ is from 1-9, with 1 meaning equally important and 9 meaning factor i is preferred substantially more over factor j.

The transformed comparison matrix produced using Katie's preferences could be

$$
\boldsymbol{A}=\left[\begin{array}{ccccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 \\
2 & 1 & 2 / 3 & 1 / 2 & 2 / 5 & 1 / 3 & 2 / 7 \\
3 & 3 / 2 & 1 & 3 / 4 & 3 / 5 & 1 / 2 & 3 / 7 \\
4 & 2 & 4 / 3 & 1 & 4 / 5 & 2 / 3 & 4 / 7 \\
5 & 5 / 2 & 5 / 3 & 5 / 4 & 1 & 5 / 6 & 5 / 7 \\
6 & 3 & 2 & 3 / 2 & 6 / 5 & 1 & 6 / 7 \\
7 & 7 / 2 & 7 / 3 & 7 / 4 & 7 / 5 & 7 / 6 & 1
\end{array}\right]
$$

Or, if she chose some other preferences, the importance of which we will illustrate later, the matrix could be

$$
\boldsymbol{B}=\left[\begin{array}{ccccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 8 \\
2 & 1 & 2 / 3 & 1 / 2 & 2 / 5 & 1 / 3 & 2 / 7 \\
3 & 3 / 2 & 1 & 3 / 4 & 3 / 5 & 1 / 2 & 3 / 7 \\
4 & 2 & 4 / 3 & 1 & 4 / 5 & 2 / 3 & 1 / 2 \\
5 & 5 / 2 & 5 / 3 & 5 / 4 & 1 & 1 & 5 / 7 \\
6 & 3 & 2 & 3 / 2 & 1 & 1 & 1 \\
8 & 7 / 2 & 7 / 3 & 2 & 7 / 5 & 1 & 1
\end{array}\right]
$$

Step 2: Checking for Inconsistencies

Before applying a comparison matrix to calculate the relative importance of criteria, we need to check if it is rational, which is, not self-contradictory or inconsistent in opinions. For example, if A is preferred over B and B is preferred over C, it is irrational that C is preferred over A. Several steps are required to achieve this.

If a person's preference of the factors (being more or less important to them) is perfectly consistent, then the comparison matrix \boldsymbol{A} derived from his or her preferences should satisfy

$$
\begin{equation*}
\boldsymbol{A}_{i j} \cdot \boldsymbol{A}_{j k}=\boldsymbol{A}_{i k} \tag{8.3}
\end{equation*}
$$

A matrix that satisfies this property is a consistent matrix. It can be proved that a $n \times n$ reciprocal matrix is consistent if and only if its greatest eigenvalue

$$
\begin{equation*}
\lambda_{\max }=n \tag{8.4}
\end{equation*}
$$

This illustrates a method to test if a person's opinion is perfectly consistent. For the Katie's example, the 7×7 comparison matrix \boldsymbol{A} is consistent because

$$
\begin{equation*}
\max \{\lambda:(\boldsymbol{A}-\lambda \boldsymbol{E}) \boldsymbol{x}=\mathbf{0}\}=7 \tag{8.5}
\end{equation*}
$$

while the comparison matrix \boldsymbol{B} is not consistent because

$$
\begin{equation*}
\max \{\lambda:(\boldsymbol{B}-\lambda \boldsymbol{E}) \boldsymbol{x}=\mathbf{0}\} \approx 7.011>7 \tag{8.6}
\end{equation*}
$$

However, people do not always hold consistent opinions, and thus we need to use a consistency index $C I$ to measure the extent to the consistency of a comparison matrix. For a $n \times n$ matrix with the greatest eigenvalue $\lambda_{\text {max }}$, its consistency index $C I$ can be defined as

$$
\begin{equation*}
C I=\frac{\lambda_{\max }-n}{n-1} \tag{8.7}
\end{equation*}
$$

Note that matrices having smaller $C I$ is more consistent. The calculated $C I$ is then compared with the random index $R I$. The random index $R I$ is defined to be the average $C I$ of random comparison matrices with same order. Typically, we can tolerate a matrix with a consistency index that satisfies

$$
\begin{equation*}
\frac{C I}{R I}<0.1 \tag{8.8}
\end{equation*}
$$

Returning to the example of Katie, as we know that the comparison matrix \boldsymbol{B} she produced is not perfectly consistent, to check whether the inconsistency of opinions represented by matrix \boldsymbol{B} is tolerable, we will first refer to table 8.2 for the value of $R I$ when $n=7$, which is $R I=1.32$.

n	2	3	4	5	6	7	8	9	10
$R I$	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.51

Table 8.4: RI value for different n

Then, we test if

$$
\frac{C I}{R I}=\frac{\frac{\lambda_{\max }-n}{n-1}}{R I}=\frac{\frac{7.011-7}{7-1}}{1.32}=0.0014<0.1
$$

is true. As $0.0014<0.1$ holds true, we can state that the inconsistency of matrix \boldsymbol{B} is in the tolerable range, and the data collected is considered valid.

Step 3: Calculating the Weight Vector

After checking the consistency of the comparison matrix, we continue with calculating the absolute weight of each factor. We first deduce the normalized pairwise comparison matrix $\overline{\boldsymbol{A}}$ from a $n \times n$ comparison matrix \boldsymbol{A} using the formula

$$
\begin{equation*}
\overline{\boldsymbol{A}}_{i j}=\frac{\boldsymbol{A}_{i j}}{\sum_{k} \boldsymbol{A}_{k j}} \tag{8.9}
\end{equation*}
$$

then build the criteria weight vector \boldsymbol{w} using the formula

$$
\begin{equation*}
\boldsymbol{w}_{i}=\frac{\sum_{j} \boldsymbol{A}_{i j}}{n} \tag{8.10}
\end{equation*}
$$

Thus, the resulting normalized pairwise comparison matrices $\overline{\boldsymbol{A}}$ and $\overline{\boldsymbol{B}}$ for the comparison matrices \boldsymbol{A} and \boldsymbol{B} in Katie's example would be

$$
\bar{A}=\left[\begin{array}{ccccccc}
\frac{1}{28} & \frac{1}{28} & \frac{1}{28} & \frac{1}{28} & \frac{1}{28} & \frac{1}{28} & \frac{1}{28} \\
\frac{1}{14} & \frac{1}{14} & \frac{1}{14} & \frac{1}{14} & \frac{1}{14} & \frac{1}{14} & \frac{1}{14} \\
\frac{3}{28} & \frac{3}{28} & \frac{3}{28} & \frac{3}{28} & \frac{3}{28} & \frac{3}{28} & \frac{3}{28} \\
\frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\
\frac{5}{28} & \frac{5}{28} & \frac{5}{28} & \frac{5}{28} & \frac{5}{28} & \frac{5}{28} & \frac{5}{28} \\
\frac{3}{14} & \frac{3}{14} & \frac{3}{14} & \frac{3}{14} & \frac{3}{14} & \frac{3}{14} & \frac{3}{14} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right]
$$

and

$$
\overline{\boldsymbol{B}}=\left[\begin{array}{ccccccc}
1 / 29 & 1 / 28 & 1 / 28 & 1 / 29 & 1 / 27 & 1 / 28 & 7 / 227 \\
2 / 29 & 1 / 14 & 1 / 14 & 2 / 29 & 2 / 27 & 1 / 14 & 16 / 227 \\
3 / 29 & 3 / 28 & 3 / 28 & 3 / 29 & 1 / 9 & 3 / 28 & 24 / 227 \\
4 / 29 & 1 / 7 & 1 / 7 & 4 / 29 & 4 / 27 & 1 / 7 & 28 / 227 \\
5 / 29 & 5 / 28 & 5 / 28 & 5 / 29 & 5 / 27 & 3 / 14 & 40 / 227 \\
6 / 29 & 3 / 14 & 3 / 14 & 6 / 29 & 5 / 27 & 3 / 14 & 56 / 227 \\
8 / 29 & 1 / 4 & 1 / 4 & 8 / 29 & 7 / 27 & 3 / 14 & 56 / 227
\end{array}\right] .
$$

The criteria weight vectors $\boldsymbol{w}_{\boldsymbol{A}}$ and $\boldsymbol{w}_{\boldsymbol{B}}$ will be

$$
\boldsymbol{w}_{\boldsymbol{A}}=\left[\begin{array}{c}
1 / 28 \\
1 / 14 \\
3 / 28 \\
1 / 7 \\
5 / 28 \\
3 / 14 \\
1 / 4
\end{array}\right]
$$

and

$$
\boldsymbol{w}_{\boldsymbol{B}}=\left[\begin{array}{c}
1214239 / 34837326 \\
1236163 / 17418618 \\
1236163 / 11612412 \\
1214239 / 8709309 \\
1589639 / 8709309 \\
1763141 / 8709309 \\
2204656 / 8709309
\end{array}\right] .
$$

Step 4: Output

After Katie's settings are converted to the criteria weight vectors $\boldsymbol{w}_{\boldsymbol{A}}$ or $\boldsymbol{w}_{\boldsymbol{B}}$, we can apply these weights into the Comprehensive Model directly, as shown in the formula below.

$$
\begin{align*}
& \mathbb{C}=\boldsymbol{w}_{1} h_{\max }+\boldsymbol{w}_{2} s_{\max }+\boldsymbol{w}_{3} g_{\max }+\boldsymbol{w}_{4} \omega+\boldsymbol{w}_{5} b_{T} \\
& -\boldsymbol{w}_{6} \frac{1}{1+e^{45\left(0.88-g_{\max }\right)}}-\boldsymbol{w}_{7} \frac{1}{1+e^{30(0.85-\omega)}} \\
& =\sum_{i=1}^{7} \boldsymbol{w}_{i} \mathcal{F}_{i} \tag{8.11}
\end{align*}
$$

Using this formula, the app recalculates the Comprehensive index for each roller coasters, and rank them accordingly. With this customized ranking for each user, our recommendation would be flexible to individual preferences.

9 - Adding Weights to the Comprehensive Model

As we discussed in part 8.2 , users that are new to roller coasters simply want to leave all the
customization as default and have our recommendation. The unweighted version of Comprehensive Model we built in part x gives a default ranking; however, it is under the assumption that people view each factor with equal importance, but it is certainly not the case in real life. After considering this problem, we think that we can improve the default recommendation by adding weights to each factor.

Recall that the unweighted version of the Comprehensive Model in part x:

$$
\begin{align*}
\mathbb{C} & =h_{\max }+s_{\max }+g_{\max }+\omega+b_{T}-\frac{1}{1+e^{45\left(0.88-g_{\max }\right)}}-\frac{1}{1+e^{30(0.85-\omega)}} \\
& =\sum_{i=1}^{7} \mathcal{F}_{i} \tag{9.1}
\end{align*}
$$

After we add weights to the Comprehensive Model, it can be represented by the formula

$$
\begin{align*}
\mathbb{C} & =\boldsymbol{w}_{1} h_{\max }+\boldsymbol{w}_{2} s_{\max }+\boldsymbol{w}_{3} g_{\max }+\boldsymbol{w}_{4} \omega+\boldsymbol{w}_{5} b_{T} \\
& -\boldsymbol{w}_{6} \frac{1}{1+e^{45\left(0.88-g_{\max }\right)}}-\boldsymbol{w}_{7} \frac{1}{1+e^{30(0.85-\omega)}} \\
& =\sum_{i=1}^{7} \boldsymbol{w}_{i} \mathcal{F}_{i} \tag{9.2}
\end{align*}
$$

where $\boldsymbol{w}_{\boldsymbol{c}}$ is the weight vector.

To find the values of \boldsymbol{w}, we used the same method in Section 8.3.2, the part where we customized a ranking for different users using the AHP method.

First of all, we conducted a survey online (the result of which is in Appendix D) to find people's comparative preference between each factors of our model (similar to Section 8.3.2 Advanced Customization: Detailed weights where we ask the users of our app to input their customized settings). We asked people questions like "is the height of the roller coaster or the speed of the roller coaster more important to you? please scale from 1 to 9,5 means equally important". The study was done with 60 different users, each fully complete 21 questions about the preference of one factor over another scaling from 1 to 9 .

Using the transformation described in Section 8.3.2, we calculate the 7×7 Comparison Matrix $\boldsymbol{A}_{\boldsymbol{c}}$:

$$
\boldsymbol{A}_{\boldsymbol{c}}=\left[\begin{array}{ccccccc}
1 & 0.33 & 7.0 & 7.0 & 7.0 & 5.0 & 5.0 \tag{9.3}\\
3 & 1 & 7.0 & 7.0 & 7.0 & 5.0 & 5.0 \\
0.14 & 0.14 & 1 & 1 & 3 & 1 & 3 \\
0.14 & 0.14 & 1 & 1 & 5 & 0.33 & 1 \\
0.14 & 0.14 & 0.33 & 0.2 & 1 & 1 & 1 \\
0.2 & 0.2 & 1 & 3 & 1 & 1 & 1 \\
0.2 & 0.2 & 0.33 & 1 & 1 & 1 & 1
\end{array}\right]
$$

After that, we follow the exact same steps in Section 8.3.2 Advanced Customization: Detailed
weights, and the resulting $\boldsymbol{w}_{\boldsymbol{c}}$ is this:

$$
\boldsymbol{w}_{\boldsymbol{c}}=\left[\begin{array}{l}
1.24 \tag{9.4}\\
1.69 \\
0.35 \\
0.30 \\
0.18 \\
0.31 \\
0.23
\end{array}\right]
$$

Thus, the final version of the Comprehensive Model is this:

$$
\begin{align*}
\mathbb{C} & =1.24 * h_{\max }+1.69 * s_{\max }+0.35 * g_{\max }+0,3 * \omega+0.18 * b_{T} \\
& -0.31 * \frac{1}{1+e^{45\left(0.88-g_{\max }\right)}}-0.23 * \frac{1}{1+e^{30(0.85-\omega)}} \\
& =\sum_{i=1}^{7} \boldsymbol{w}_{c} \mathcal{F}_{i} \tag{9.5}
\end{align*}
$$

10 - Results

Using the weighted Comprehensive Model (part 9), we calculated the Comprehensive Index of each roller coasters; and each roller coasters are ranked accordingly, and the Steel Dragon 2000 from Nagashima Spa Land park ranks number one, with comprehensive index equals to 1.72.

The following table shows our rank of "Top 10 Roller Coasters in the World":

Name	Park	Comprehensive Index
Steel Dragon 2000	Nagashima Spa Land	1.72
Fury 325	Carowinds	1.71
Millennium Force	Cedar Point	1.70
Fujiyama	Fuji-Q Highland	1.66
Leviathan	Canada's Wonderland	1.65
Formula Rossa	Ferrari World Abu Dhabi	1.65
Desperado	Buffalo Bill's Resort \& Casino	1.62
Intimidator 305	Kings Dominion	1.62
Titan	Six Flags Over Texas	1.62
Steel Vengeance	Cedar Point	1.61

Table 10.1: The table shows the ranking based on comprehensive index

10.1 Comparison with Other Rankings Systems

In order to evaluate our model, we compared our model with two other ranking systems we found online.

The first one is found on ranker.com, which is a large community (over 1200 voters on this topic) where everyone can upvote and downvote roller coasters that they like or dislike (with more than 9000 operations already), and the system will adjust its ranking according to user preference.

This model might represent the general preference of the population toward roller coasters, but it may be biased because this is a voluntary survey, which may result in undercoverage bias.

The second ranking system that we found is in a personal blog, written by a roller coaster enthusiast named Shannon George. This ranking reflects the preference of an expert who have ridden a great number of roller coasters. However, this ranking is very subjective.

The reason we choose these two rankings to compare with our model is because their ranking concept differs from our model's greatly. Our model emphasizes on the balance between objectiveness and subjectiveness, while the ranking on ranker.com uses purely rider feedbacks and George's ranking is based on the preference of one person. The comparison of the top 10 roller coasters that ranks in these three models are compared in Table 10.2.

It can be observed that there are many common roller coasters on our Top 10 ranking from Table 10.2.

Ranking	Our Model	Ranker.com	Enthusiast George
1	Steel Dragon 2000	Millennium Force	Bizarro
2	Fury 325	Steel Vengeance	Millennium Force
3	Millennium Force	Top Thrill Dragster	El Toro
4	Leviathan	Maverick	Expedition GeForce
5	Formula Rossa	El Toro	The Voyage
7	Desperado	Kingda Ka	
8	Intimidator 305	Intimidator 305	Intimidator 305
9	Titan	The Voyage	Goliath
10	Steel Vengeance	Apollo's Chariot	Nemesis
4			

Table 10.2: Comparison Table between our ranking and two other ranking found online (common items are marked with a common color)

11 - Evaluation

There are both strengths and weaknesses in our model:

Strengths

Our model is very comprehensive. We have taken many factors that may contribute to the ranking of roller coasters, including its maximum speed, maximum G force, height, inversion density, and its type. We have also considered that both the feeling of thrill and the feeling of discomfort contributes to overall experience of ride; therefore, the model also penalize extreme roller coasters.

Our model is very objective. This is because it is based on data and all data are standardized and normalized using Box-Cox transformation so that the unit of each variables will not affect the final ranking.

The results of our model are easy to interpret. The index is designed to be straightforward 'bigger is better' and one can effectively compare two roller coasters with the need to understand its mechanism.

The model quantifies the amount of thrilling each type of roller coasters brings to a rider with the Borda Count Method.

Our model is flexible for missing data. This is because we have analyzed correlation relationships between variables so that missing values can be filled by mean imputation or regression imputation.

The default recommendations of our app can improve itself by learning the customized settings of different users.

Limitations

Each variable in our calculation of the Comprehensive Model is not weighted, meaning that they are equally important when a person is judging a roller coaster. However, this is not the case in real life. This problem is solved in our app, which uses the customized setting of our users to offer recommendations that fits them the most.

The dataset that we used to rank our "Top 10 Roller Coasters in the World" only have the data of 300 roller coasters, which is far lesser than the total number (about 3950) of roller coasters worldwide. Therefore, our rank does not consider other roller coasters which are not included in the dataset.

There are a lot of missing data and they are replaced by means of imputation, which may be inaccurate and lead to biased results on some operational roller coasters

The Borda count method - which we used to quantify the amount of thrilling each type of roller coasters brings to a rider - do not satisfy all fairness criterions, as stated by Arrow's impossibility theorem. It also does not satisfy the Independence-of-Irrelevant-Alternatives Criterion (IIA), which in this scenario means that the ranking is prone to change because of lowly-ranked roller coasters closing.

The Discomfort probability curve is derived from a study instead of real data and may be inaccurate of representation for the general public.

12 - References

1. "Random Roller Coaster." Roller Coaster DataBase, www.rcdb.com.
2. "Ultimate Rollercoaster." Coney Island | Roller Coaster History, www.ultimaterollercoaster.com.
3. "Coasterpedia The Roller Coaster Wiki." Coasterpedia, coasterpedia.net.
4. "Rank the B\&M Types $\cdot \mathrm{r}$ /Rollercoasters." Reddit, www.reddit.com/r/rollercoasters/comments/56sz3e/rank_the_bm_types/.
5. "Rank the B\&M Coaster Types." COASTERFORCE, coasterforce.com/forums/threads/rank-the-b-m-coaster-types.39119/.
6. Pandolf, Kent B., and R. E. Burr. Medical Aspects of Harsh Environments. Office of the Surgeon General, United States Army, 2001.
7. DeZio, Paul A, and James R Lackner. "Perceived Orientation, Motion, and Configuration of the Body during Viewing of an off-Vertical, Rotating Surface." Perception \& Psychophysics, Jan. 1986, pp. 39-46.
8. "Material Design." Wikipedia, Wikimedia Foundation, 26 Oct. 2018, en.wikipedia.org/wiki/Material_Design.
9. Ergonomic Requirements for Office Work with Visual Display Terminals, ISO 9241-11, ISO, Geneva, 1998.

Appendix

Appendix A: The Prototype of Our Application

Appendix B: Code

Code \#1 Data Analysis and Visualization

import numpy as np
import pandas as pd import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', '")

```
# Import dataset
```

data
pd.read_excel("COMAP_RollerCoasterData_2018.xlsx")[0:300].drop(["Park","City/Region","City/State/Reg
ion","Country/Region","Geographic Region","Status"],axis=1)
data
\# Output basic statistics about the dataset
data.describe()
data = data.rename(\{"Year/Date Opened":"Year",
"Height (feet)":"Height",
"Speed (mph)":"Speed",
"Length (feet)":"Length",
"Number of Inversions":"\#of Inversions",
"Drop (feet)":"Drop",
"Vertical Angle (degrees)":"Vertical Angle",
"Duration (min:sec)":"Duration"
\},
axis="columns")
\# Convert python Datetime Object to seconds
for i in range(data.shape[0]):
if(type(data.Duration[i]) != float):
data.Duration[i] = (data["Duration"][i].hour*60 + data["Duration"][i].minute)
\# Type conversion
data["Inversion Density"] = data["\#of Inversions"] / data["Duration"]
data["Inversion Density"] = pd.to_numeric(data["Inversion Density"]).astype(float)
data["Duration"] = pd.to_numeric(data["Duration"]).astype(float)
data["Duration"] = pd.to_numeric(data["Duration"]).astype(float)
\# Correlation Matrix
data["Inversion Density"] = pd.to_numeric(data["Inversion Density"]).astype(float)
data["Duration"] = pd.to_numeric(data["Duration"]).astype(float)
Correlation = data.corr()
Correlation[abs(Correlation)>0.4]
plt.figure(figsize=(8,8))
plt.title("Correlation Matrix (|r| >= 0.4)")
sns.heatmap(Correlation[abs(Correlation)>0.4],xticklabels=Correlation.columns,
yticklabels=Correlation.columns,annot=True,
cmap = sns.diverging_palette(250, 10, as_cmap=True),)
\# Regression Plots
plt.plot(data.Height,data.Drop,".")

```
plt.title("Height vs Drop")
sns.regplot(x="Height", y="Drop", data=data,label="scatter");
sns.regplot(x="G Force", y="Length", data=data,scatter=False,label="no scatter");
sns.pairplot(data,kind="reg",diag_kind='kde')
```


Code \#2 Comprehensive Model

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', "')
\# Import dataset
data = pd.read_excel("Standardized Data.xlsx")
data["Type Score"] = np.zeros(data.shape[0])
data["Thrill Index"] = np.zeros(data.shape[0])
data["Discomfort Index"] = np.zeros(data.shape[0])
data["Comprehensive Index"] = np.zeros(data.shape[0])
data = data.drop(["Park","City/Region","City/State/Region","Country/Region","Geographic
Region","Status"],axis=1)
data
\# Calculates type score
for i in range(0,data.shape[0]):
if data["Type"][i] == "Inverted": data["Type Score"][i] = 1.0
elif data["Type"][i] == "Flying": data["Type Score"][i] = 0.704
elif data["Type"][i] == "Wing": data["Type Score"][i] = 0.674
elif data["Type"][i] == "Sit Down": data["Type Score"][i] = 0.591
elif data["Type"][i] == "Suspended": data["Type Score"][i] = 0.587
elif data["Type"][i] == "Stand Up": data["Type Score"][i] = 0.24
else: data["Type Score"][i] = 0.2
\# Set Weight values
W_thrill = 1
W_discomfort = 1

Wheight $=0.28957165$
Wspeed = 0.39279611
WG = 0.08114455
Wtype $=0.06912188$
WInversion $=0.06912188$
WDG $=0.0725201$
WDI $=0.052985$
\# CalculateThrill Index
data["Thrill Index"] = data["Length"] + Wtype*data["Type Score"] + Wheight*data["Height"] + Wspeed*data["Speed"] + WG*data["G Force"] + WInversion*data["Inversion Density"]
\# Calculates discomfort index
x = np.array(data['G Force'])
y = np.array(data['Inversion Density'])
data["Discomfort Index"] = WDG*(1 / (1 + np.exp(45 * (0.88-x)))) + WDI*(1 / (1 + np.exp(30 * (0.85-y))))
\# Calculates Overall
data["Comprehensive Index"] = W_thrill*data["Thrill Index"] - W_discomfort*data["Discomfort Index"]
\# Sort by Comprehensive Index
sort = data.sort_values("Comprehensive Index", ascending=False)
sort
\# Output
data.to_csv("Overall Ranking(Weighted).csv")

Code \#2 AHP

import numpy as np
$\mathrm{RI}=1.32$
\# Function to convert users' input to Comparison Matrix used by AHP
$\operatorname{def} \mathrm{t}(\mathrm{x})$:
if $x>=5$:
return 2*x-9
else:
return $1 /\left(11-2^{*} x\right)$
user_input = [[None,None,None,None,None,None,None],
[6,None,None,None,None,None,None],
[2,2,None,None,None,None,None],
[2,2,5,None,None,None,None],
[2,2,4,3,None,None,None],
[3,3,5,6,5,None,None],
[3,3,4,5,5,5,None]]
\# A = Comparison Matrix
A = np.ones ($(7,7))$
for i in range $(0,7)$:
for j in range $(0,7)$:
if $i==j$:
$A[i][j]=1$
continue
if user_input[i][j]==None:
$\mathrm{A}[\mathrm{i}][\mathrm{j}]=1 / \mathrm{t}$ (user_input[j][i])
else:
A[i][j]=t(user_input[i][j])

I, _ = np.linalg.eig(A)
\# Check for Inconsistency
if $\max (\mathrm{I})-7>0.00000001$
if $(\max (\mathrm{I})-7) / 6 / \mathrm{RI}<0.1$:

```
        print('tolerable inconsistency')
    else:
        print('intolerable inconsistency')
        quit()
col_sum = np.sum(A, axis=0)
# Calculate Normalized matrix A
adjA = np.ones((7,7))
for i in range(0,7):
    for j in range(0,7):
        adjA[i][j] = A[i][j] / col_sum[j]
# Calculate Weight Vector
w = np.sum(adjA, axis=1)
w/= 7
print(w)
```


Appendix C: Our Data Spreadsheet

Name - ${ }^{\text {P }}$	Park	City/Regior -	ty/s	Constructio -	Type -	Heig \sim	Spee -	Lengt - - \#	\#of Inversions -	Dro -	Duratio \sim	G Forc -	Vertical Aniv	$n \mathrm{D}$	Yype	Thrill Index -	Discomfort -	Compreher
Steel Dragon 2 N	2 Nagashima Sp	Nagashima	Kuwana,, Mie	Steel	Sit	0.9822	0.9698	0.99809	0	0.962	0.983125	0.19413		0	0.59	1.720063404	4.49E-13	1.720063404
Fury 325	Carowinds	Charlotte	North Carolines	Esteel	Sit Down	0.9842	0.9698	0.98268	0	0.97	0.785468	0.2029	0.657473884	0	0.591	1.705921745	4.51E-13	1.705921745
Millennium Fc	cledar Point	Sandusky	Ohio	Steel	Sit Down	0.9795	0.9643	0.98252	0	0.957	0.638584	0.20299	0.637603874	0	0.591	1.70223526	4.51E-13	1.70223526
Fujivama	Fuji-Q Highlan	Fujiyoshida	Yaman	Steel	Sit Down	0.9501	0.90	0.98495	0	0.856	0.958603	0.09261	0.309158993	\bigcirc	0.591	1.66287874	4.46E-13	1.66287874
Leviathan	Canada's Won	Vaughan	Onterio	Steel	Sit Down	78	0.9611	0.93391	0	0.961	0.945313	0.23063	0.637603874	0	0.591	1.654203578	.618-13	1.654203578
Sa	F	habi	Abu Dhabi	Steel	Sit Dow	0.7661	0.99	0.98	0		0.7848	0.203		0	0.0591	S36147	1E-	1.653614
Des	Buf	R Primm	Nevada	Steel	Sit Down	0.8792	0.8959	0.95579	0	0.845	0.788591	0.29993	0.210486308	- 0	0.591	1.627487223	7.81-13	1.627487223
dator 30 K	K	c Doswell	Virginia	Steel	Sit Down	0.9776	0.954	0.90085		0.957	0.867344	0.24943	0.731113894	0	0.591	1.619771595	4.81E-13	1.619771595
Titan	Six Flags Over	Arlington	Texas	Steel	Sit Down	. 9359	0.9305	0.92034	0	0.905	0.948938	0.23835		0	0.591	17045055	57E-13	1704505
Steel Venge	Cedar Point	Sandusky	Ohio	Steel	Sit Down	0.8705	0.8342	0.95022	26	0.772	0.709769	0.22136	0.808426206	0.279794633	30.591	747443	7E-0	1.616747441
Hyperion	Energylandia	Zator	Malopols	Steel	Down	0.944	0.94	0.86152	0.041137489	0.9	0.710796	0.80095	0.731113894	0	- 0.591	1.612535723	. 002010311	1.610525412
Nitro	Six Flags Great	Jackson	New Jersey	Steel	Sit Down	0.9165	0.8959	0.92699	0	0.818	8584	0.23456		0	0.591	1.604185034	4.64E-13	. 04185034
Silver S	Europa Park	Rust	Baden Wue	Steel	Sit Down	. 923	0.88	0.9206	0	0.8	0.983125	0.29993	0.385471979	0	591	1.603099136	81E-13	1.603099136
Coa	Nanchang Wal	1x	Nanchan	Steel	Sit Down	0.9334	0.9276	0.90135		0.907	0.989575	0.24915		0	0.591	492	OE-	1.597049262
Diamondback	Kings Island	Kings Mill	Ohio Ste	Steel	Sit Down	0.9165	0.8959	0.91779		0.818	0.867344	0.2398		0	0.591	1.595405661	4.69E-13	1.595405661
Shambhala	PortAventura	Salou	Tarragona	Steel	Sit Down	0.9406	0.9202	0.90394	0	0.907	0.867344	0.19764		0	$0 \quad 0.591$	46371	4.50E-13	594
Sup	? Six Flags Mexi	Mexico City	Mexico City	Steel	Sit Down	0.9001	15	0.94023	0	0.788	2086	0.22704		0	0.0 .591	90698365	4.59E-13	1.5906983
Behemoth	Canada's Won	Vaughan	Onterio	steel	Sit Down	0.9165	0.8	0.92085	0		, 77359	0.23806	0.53	0	0.0 .591	87447415	77E-13	87447415
Superman the	Six Flags New	Agawam	Massach	Steel	Sit Down	0.8771	0.8	0.92746	0	0.835	996	343		0	0.591	5515	IE-13	515
Steel Force	Dorney Park \&	Allentown	Pennsylvania	Steel	Sit Down	0.85	0.8	0.94171	0	0.788	0.867344	. 2262		0	0.591	989151	58E-13	1.581989151
Intimidator	Carowinds	Charlotte	North Caroline	ES	Sit Down	0.9194	0.8463	2068	0	0.807	9399	0.23816	0.509236295	0	0.591	3679	TE-13	1.579513679
Mamba	Worlds of fun	Kansas City	Missouri	Steel	Sit Down	0.8705	0.8463	0.94171		0.788	0.867344	0.09261		0	0.591	5456563	.6E-13	1.5745656
Wild Thing	Valleyfair!	Shakope	eso	steel	Sit Down	0.8749	0.8342	0.93201	0	0.758	0.867344	0.2		0	0.591	1.572686719	2E-	1.5726867
Big One	Blackpool Plea	Elackpool	Lancashire, En	Steel	Sit Down	0.8874	0.8342	0.93469	0	0.788	0.867344	0.09261	0.309158993	0	0.591	1.5676967	4.46E-13	1.5676967
Ride of Steel	Darien Lake	C	New York	Steel	Sit D	0.8771	0.8213	746	0	0.788	2632	0.2343	4342929	0	0.591	902482	E-13	. 563902482
Superman- Ris	Six	Upper Marlbo	aryland	steel	Sit Do	0.8511	0.8213	48	0	0.78	02	56	0.374342929	0	0.591	371	4.66E-13	71
Flying Aces	Ferrari World	Abu Dhabi	Abu Dhabi	Steel	Sit Down	0.8743	0.8415	0.88162	3749		0.723181	0.88559		0	0.591	1.578052566	. 040800604	1.537251961
Magnum XL-2lC	CCedar Point	Sandusky	Ohio	Steel	Sit Down	0.8705	0.8075	145	0	0.753	518	999	0.210486308	0	- 0.591	53313	80E-13	1.531763313
Raging Bull	Six Flags Great	Gurnee	Illinois	Steel	Sit Down	0.8635	0.8213	0.89646		0.798	0.709769	0.25193	58993	- 0	0.591	399458	35E-3	5303994
voyage	Holiday World	Santa Claus	Indian	Wood	Dow	0.7164	0.72	0.9787	0	0.571	0.799272	0.20516	0.330523336	0	- 0.591	1.528472147	51E-13	1.528472147
Goliath	Six Flags Magi	Valencia	Californi	Ste	Sit Do	0.9236	0.9305	0.8250	\bigcirc	0.905	0.867344	0.29256	3128	- 0	- 0.591	1.522529951	66-13	1.52252995
Mak	SeaWorld Orla	Orlando	Flor	Steel	Sit	0.8587	0.8213	0.86188	0	0.772	0.71102	0.27159		0	0.591	1.496017479	5.40E-13	1.496017479
Apollo's Chari	Busch Gardens	Williamsburg	Virginia	Steel	Sit	7	0.8213	0.87702	0	0.804	78	0.35971	93	0	- 0.591	11	5.37E-12	1.490806311
TExpress	Everland	Yongin-si	Gyeonggi-d	Wood	Sit Down	0.813	0.677	0.92619	0	0.55	654	502	75080594	\square	0.591	6553	4.64E-13	1.487486553
Soaring Dragoin	Nanchang War	Xinjian	Nanchang,	Ste	erted	0.8	0.9	281	16		0.656125	0.32224		0	1	61824	1.36E-12	1.477561824
Big Apple Coa:	: New York, Nell	Las Vegas	Nevada	Steel	Down	0.8659	0.7251	407	422	0.517	43	2034		17	- 0.591	55016	BE-	. 466855016
Goliath	Six Flags Over	Austell	Georgia	Steel	Sit Down	0.8587	0.7773	219	0	0.674	638	0.29432		0	- 0.591	4472	7.06E-13	406
Beast	Kings Island	Mason	Ohio	Wood	Sit Down	0.41	0.6813	0.99388	- 0	0.5	0.988687	0.19653	0.034618732	- 0	- 0.591	1.437011519	50E-13	1.437011519
Schwur des K?	Hansa Park	Sierksdorf	Schles	I Steel	Sit	0.9294	0.8864	0.74594	137489	0.832	0.639566	0.33752		0	591	98169	E-12	1498169
Bans	Kings Island	Mason	Ohi	Ste	Inv	0.7516	0.7435	0.76002	0.897759767	0.55	43	2951		654547		8196	0.00015010	0848091
Python in Bam	Nanchang Wat	Xinjian	Nanchang, Jiar	,	Sit Down	0.7393	0.6211	0.90194	0	0.462	0.305081	0.24881		0	- 0.591	99	4.80E-13	1.42103299
Do-Dodonpa	Fuj-Qhighlan	Fujivoshi	Yan	Steel	Sit	0.7247	0.9928	0.75176	89		0.643149	21		0	- 0.591	5454	2.01E-12	1.41954545
Flash	Lewa Adventu	U lingyang	Xianyang,Shas	Stee	it Down	0.8592	0.8003	25994	1422	0.737	195	2381		37292	- 0.591	212191	29E-1	1.41621219
El Toro	Six Flags Great	Jackson	New Jersey	Wood	do	0.8039	0.7773	0.80909	0	0.678	0.321576	0.30161	0.553427494	\bigcirc	- 0.591	1.412527808	O7E-1	1.41252780
Hyper Coaster L	Land of Legen:	Antalya	Antalya	Steel	it Dow	92	. 003	0.76994	891422	. 73	0.654353	0.42381		0	0.591	108328462	6E-11	1.408328461
Eejanaika	Fuji-QHighlan	Fujiyoshida	Yamanashi	Ste	Wing	06	0.8809	0.6891	0.395734554		0.559702	0.36985		03551547	- 0.674	456897	O8E-10	1.404456897
wildfire	Kolmarden	Norrkoping	Ostergotland	Wood	Sit Down	1	03	0.76502	5573454	0.607	0.475518	0.29993	0.695521065	0.243480466	- 0.591	348912	10	4348911
GateKee	Cedar Point	Sandusky	Ohio	Steel	Wing	0.7637	0.7251	0.7676	0.831258716	0.623	0.771843	0.3252		0.526723043	0.674	1.399216793	3.25E-0	1.399213541
Helix L	Liseberg	Gothen	Vastra Gotalar	rsteel	Sit Down	0.5824	0.6211	0.82972	0.897759767		0.559702	67		0.811392307	- 0.591	1.40413354	0.012662829	1.391470711
Gao	Greenland	rao	Kumamoto	Steel	Sit Down	0.5619	0.5923	0.93184	0		0.98028	0.23181		0	- 0.591	1.386835937	4.62E-	. 88683
Superman Kry S	Six Flags Fiest:	San Anton	Texas	Steel	tod	0.7557	0.7773	0.738	8716		0.741996	171		52964556	- 0.591	60546	15E-0	1.3865983
Viper	Six Flags Magi	Valencia	forn	Steel	Dow	61	0.7773	0.69956	767	0.656	0.709769	0.3639		2416	- 0.591	85130814	. 00070733	1.384423484
Expedition	Holiday Park	Hassloch	Rhineland	Isteel	Sit Down	87	0.8	0.73606			0.128914	0.62519	0.676790701	0	0.591	1.383699468	7.60E-07	1.383698708
Riddler's Reve	Six Flags Magit	Valencia	California	Steel	Stand Up	0.7022	0.6854	0.80412	831258716	0.528	0.867344	0.42381		32616198	24	1.370932835	3E-07	1.370932642
Dragon Mount	t Marineland Th	Niagra Fa	Ontario	Steel	Sit Down	0.82	0.2943	0.93491	0.583837726		0.948938	0.23006		63715	- 0.591	8136	E-11	136
Katun	Mir	Savio	Emilia-R	Steel	Inverted	0.7393	0.677	0.72252	0.831258716	0.537	0.653496	0.29993		0.625838878		1.358577572	- 6.35E-05	1.358514028
Kraken S	SeaWorld Orla	Orl	lorida	Steel	Sit Down	0.6666	0.6854	0.77003	0.897759767	0.517	0.492632	0.32382		0.851144082	- 0.591	1.38454707	0.02	1.357599971
Alpengeist	usch Garden:	Williamsburg	Virginia	steel	vert	0.8459	0.72	0.69912	58716	0.651	0.90174	0.1562		20298		8725	5.72E-08	772
Pyrenees	Parque Espanes	Shima	Mie	Steel	Inverted	0.6597	0.6211	0.74531	716		0.415171	0.33		. 01995642		39896	0.010147958	1.346891
Jupiter	Kijima Kogen		Oita	Wood	Sit Down	0.604	0.4907	0.91493	0		0.735739	0.24142	034618732	0	- 0.591	1.34302513	4.70E-13	1.34302513
American Eagl	Six Flags Great	Gurnee	Illinois	Wood	Sit Down	0.5333	0.7057	0.84707		0.533	0.660831	0.28002	0.130242439	0	0.591	1.342273098	5.83E-13	1.342273098
Dragon Khan	Portaventur	Salou	Tarragona	Steel	Sit Down	0.6613	0.68	0.76779	471	0.608	0.346704	0.3251		3825	- 0.591	227846	. 05134634	40881506
New Texas Gies	eSix Flags Over	Arlingto	Tex	Steel	Sit Dow	0.6873	0.754	0.77429	0	0.5	518	0.3214	0.617218843	0	- 0.591	1926	$2 \mathrm{E}-1$	364319
Incredicoaster D	disney Califor	Anaheim	Calif	Steel	Sit Down	0.4843	0.4	0.96629	37489	0.301	8158	0.21222		3903	30.591	336358677	76E-1	1.336358
Boss	Six Flags St. Lo	Eureka	Missouri	Wood	Sit Down	0.4986	0.7117	0.84439	0	0.55	0.700239	0.28154	0.09	0	- 0.591	8378	E-13	983
Medusa Six	Six Flags Disco	Vallejo	Calif	Steel	Sit Down	0.6719	0.6854	72252	0.897759767	0.55	0.916016	. 62519		0.491101791	- 0.591	1.327013281	88E-06	1.3270114
Thunder Dolpit	STokyo Dome C	Bunkyo	Tokyo	Steel	Sit Down	0.9529	0.9023	0.62244		0.827	0.2269	0.40775	37603874	0	- 0.591	1.326752341	32E-11	1.32675234
Hades 360	Mt. Olympus	Wisconsin	Wisco	Wood	Sit Down	5918	0.5698	0.86006	0.041137489	0.494	0.709896	0.27263	0.309158993	\bigcirc	0.591	1.318206638	5.44E-13	1.318206638
Lightning Rod D	Dollywood	Pigeon Forge	Ten	Wood	Sit Down	0.8749	0.8	0.69293	0	0.627	0.606895	0.09261	0.486	0	- 0.591	1.317247851	46E-13	1.317247851
Scream!	Six Flags Magi	Valencia	California	Steel	Sit Down	0.6719	0.6419	0.73247	59767	0.5	0.867344	0.34518		0.556798774	0.5	1.30371911	02E-0	1.303711093
skyrush	Hersheypark	Hershey	Pennsylvania	Steel	Sit Down	0.8587	0.8463	0.64675	0		0.578432	0.39393	0.731113894	0	0.591	1.300641525	34E-11	1.300641525
Maverick	Cedar Point	Sandusky	hio	teel	Sit Down	0.3715	0.7773	0.81717	891422	0.25	0.709769	0.29701	0.868755899	0.052494954	- 0.591	291299	5E-12	1.300291299
Dinocon	China Dinos	nbei	Changzhou, Jix	Steel	Wing	0.9111	0.8809	0.60872	0.395734554		0.554995	0.41555		0	- 0.674	1.298875606	6.12E-11	1.298875606
Montu B	Busch Gardens	STampa	Florida	Steel	Inverted	0.6719	0.5698	0.7320	0.897759767	0.42	0.867344	0.19764	0.071901032	0.556798774		1.291279603	8.02E-06	1.29127158
Bizarro	Six Flags Great	IJackson	New Jersey	Steel	Sit Down	. 6278	0.5947	0.73247	0.897759767		0.638584	0.34518		0.759365602	91	1.292641203	0.003277632	1.289363571
Twisted Colos S	5 Six Flags Magi	Valencia	California	Steel	Sit Dow	0.915	0.49	0.88933	. 192891422	0.4	0.964126	0.25598	0.637603874	0.019527808	51	1.287961493	8.48E-13	1.287961493
x2	Six Flags Magit	Valencia	California	Steel	Wing	0.7828	0.8576	0.64914	0.192891422	0.818	0.579904	0.29993	0.787027984	0	0.67	1.283620084	.818-13	1.283620084
Kingda Ka	Six Flags Great	Jackson	New Jersey	Steel	Sit Down	0.9982	0.9982	0.52354	0	0.995	0.004075	0.46399	0.8084262	0	0.591	1.283159592	5.38E-10	1.283159592
Ultimate	Lightwater Val	Ripn	North Yorks	ISteel	Sit Down	0.387	0.2943	0.99458	0		0.792798	0.19613		0	0.591	1.279003636	4.49E-13	1.279003636
Taron	Phantasialand	Bruhl	North Rhin	steel	Sit Dow	0.32	0.8172	0.7975	0		0.671338	0.3082		0	0.5	1.277028624	9.31E-13	1.277028624
Soaring	Hefei Wanda	Baohe	Hefei, Anjui	Steel	Sit Do	506	0.8752	0.60707	0.041137489		0.799272	0.41649		0.007103475	- 0.591	1.272515839	6.39E-11	1.272515839
Valravn	Cedar Point	Sandusky	Ohio	teel	Sit Dow	. 9056	63	0.60119	0.395734554	0.8	0.550354	0.41983	08426206	0	0.591	1.270758531	7.41E-11	1.27075853
Boulder Dash L	Lake Compour	Bristol	Connecticut	Wood	Sit Down	0.41	0.5	0.85729	0	0.344	0.709769	0.2742	0.1927907	0	- 0.591	1.262945721	5.51E-13	1.262945721
Kumba	Busch Gardens	Tampa	Florida	Steel	Sit Down	0.6335	0.5698	0.73103	0.897759767	0.4	0.842609	0.19764		585011284	0.59	1.253682913	1.87E-05	1.253664227
Superman / la P	Parque Warne	San Martin	Madrid	Steel	Sit Down	0.7393	0.6211	0.64888	0.897759767		0.682331	0.39272		. 727673176	0.591	1.252411431	001316586	1.251094845
Monster	Walygator Par	Maizieres	Lorraine	Steel	Inverted	0.5619	0.4604	0.72252	0.831258716		0.69623	0.35084		0.591420525	- 1	1.222782532	2.26E-05	1.222759887
Raptor	Cedar Point	Sandusky	Ohi	Steel	Inverted	.597	0.4907	0.69071	0.831258716	0.368	0.607842	0.36893	0.034618732	0.661395836	- 1	1.22179	0.000184225	1.221605775
Red force	Ferraritand	Salou	Tarragona	Steel	Sit Down	9923	0.9928	0.46071	0		0.463774	0.49972	0.808426206	0	0.591	1.219412111	2.68E-09	1.219412108
Rougarou	Cedar Point	Sandusky	Ohio	Stee	Sit Dow	0.6448	0.5698	. 7147	0.583837726	0.476	0.771843	0.35529	0.09256997	0.243480466	- 0.591	1.21926864	6.68E-10	1.219268643
Dragon's Run D	Dragon Park	Ha Long	Quang Ninh	Steel	Sit Dow	0.6	0.6854	0.67898	83125871		0.598298	3756		0	- 0.591	1.2141162	1.05	1.214116252
dible Hul	Uni	,	Florida	Steel	Sit Down	0.41	0.7251	5027	67	0.283	0.599978	0.2999		0.7855886	0.591	17564675	5602	108625
Top Thrill Drage	Cedar Point	Sandusky	Ohio	Steel	Sit Down	0.9967	0.9964	0.43672	0	0.993	0.005166	0.51336	0.8084262	0	0.591	1.199252542	4.96E-09	1.199252537
Phantom's Reik	Kennywood	West Miflin	Pennsylvania	Steel	Sit Down	0.721	0.9305	0.54543	0	0.852	0.449702	0.45154		0	0.591	1.197203529	3.07E-10	1.197203529
Tatsu	Six Flags Magit	Valencia	California	Steel	Flying	0.7637	0.6188	0.64723	583837726	0.319	0.578727	0.39365		0	0.704	1.192033186	2.31E-11	1.192033186
GhostRider	Knott's Berry F	Buena Park	California	Wood	Sit Down	0.4698	0.4631	0.83005		0. 301	0.771843	0.02671	0.081798233	0	0.591	1.191037868	4.46E-13	1.191037868
Vortex	Kings Island	Kings Mills	Ohio	Steel	Sit Down	0.6613	0.4352	0.69293	0.831258716	0.482	0.709769	0.36766	0.130242439	0.58023695	0.591	1.184073083	1.62E-05	1.18405689
Steel Eel	SeaWorld San	San Antonio	Texas	Steel	Sit Down	0.6719	0.6854	0.67027	0	0.55	0.305081	0.09261	0.210486308	0	0.591	1.182437166	4.46E-13	1.182437166
Iron Rattler	Six Flags Fiest:	San Antonio	Texas	Steel	Sit Down	0.7971	0.7773	0.56282	0.041137489	0.656	0.526708	0.44165	0.657473884	0	0.591	1.175654973	$1.97 E-10$	1.17565497
mini	r Point	dusk	Ohio	Steel	Sit Down	0.5216	0.5698	0.7221		0.362	0.638584	0.35108		0	0.591	1.166306794	3.79E-12	1.166306794

Twister II	Ch Gardens Denver	Colorado	Wood	Sit down	0.3325	0.4352	0.84566			0.701023	0.02671		0	0.591	1.155913885	4.46-13	1.155
Speed	Mirabilandia Savio E	Emilia-Romagis	Steel	Sit Down	0.8019	0.7505	0.54946	0. 192891422		0.518468	0.49925		0	0.591	1.153763665	2.77E-10	1.153773664
aster Expre:	PParque Warne San Martin de N	Madrid	Wood	Sit down	0.4843		0.83616		0.374	0.475518	0.28622		0	0.591	1.15283723	6.27E-13	1.15283723
Grifion	Busch Garden: Williamsburg	Virginia	steel	Sit down	0.8705	0.7929	0.52085	192891422		0.867344	0.2999		0.032750153	0.591	1.15	1.53E-12	
Goliath	Six Flags Great Gurnee	Illinois	wood	Sit down	0.7432	0.8075	0.51869	91422	0.696	0.499509	0.46675	0.73111389	0	0.591	1.129800085	6.09E-10	1.129880084
Legend	Holiday World Santa Cla	Indiana	wood	Sit down	0.3247	0.5441	0.7439			0.475518	0.33863		0	591	1.120075591	E-12	
Takabisha	Fuj-Quhighan Fuilyoshida	Yamanashi	steel	Sit down	0.6219	0.6211	0.5669	0.897759767		0.406545	0.43945	0.98960826	.89656308	591	1.156923509	478376	1.114445133
Anaconda	Walygator Par Maizieres-les-L	-orraine	Wood	Sit down	0.4706	0.46	0.7225		0.016	0.559702	0.35084		0	0.591	1.108928306	3.75E-12	1.108988306
Phaethon	Gyeongiu Wor Gyeongiu	Gyeongsangbis	steel	Inverted	0.6597	0.4604	0.5669	0.831258716		0.638584	0.43945		633		1.107083271		1.106992951
Montezum	Hopi Hari Vinhedo	Sao Palo	Wood	Sit down	0.6107	0.6642	0.592	0		0.544875	0.42489		0	0.591	1.10533829	9.29E-11	1.105338829
treme Rushit	Happy Valley Chayyng	Beijing	steel	Sit down	0.7661	0.9182	0.43364		0.761	0.447091	0.51511		0	91	1.09878927	5.36E-09	
blue fire Mege	Eteuropa Park Rust B	Baden Wuert S	steel	Sit Down	0.5175	0.6211	0.61363	0.583837726		0.709769	0.19764		0.279994633	0.591	1.09231697	1.97E-09	1.092316965
velikolukskiy	Wonder I Ilanc Saint Pet	Saint Petersbis	Steel	Sit down	0.5126	0.6211	0.6135	837726		0.709769	0.19764		0.279974633	0.591	1.090784214	.97-09	
Cannibal	Lagoon Farmington	Utah	steel	sit dow	0.8771	0.7773	0.41883	7726		0.709769	0.52353	7689	0.279794633	0.591	1.089664828	9.81E-09	
Jungle Trailla F	Fantawild Dre Shifeng	Zhuzhou, Hun: w	Wood	Sit down	0.4222	0.4098	0.73339		0.207	0.226901	0.3466	86308	0	91	1.058430614	2.95E-12	1.054330614
Jock Wave	Six Flags Over Arlington	Texas	steel	Sit down	0.4551	0.5698	0.64675	0.192891422		0.475518	0.39393		O3		1.084460604	3.02--11	1.088460604
xcelerator	Knott's Berry Fbuena Park	Californ	steel	Sit down	0.6463	0.6468	0.56611	0		0.067884	0.43978	0.308426206	0	0.591	1.083882115	1.818-10	1.0838821
Patriot	Worlds of fun Kansas city	Missouri	steel	Inverted	0.6666	0.5698	0.51357	0.583837726	0.393	0.62336	0.4696				1.078870427	.02E-08	
Montana Ru	Eeta Feria Chapu Mexico city	Mexico	wood	Sit down	0.41	0.3729	0.7355			0.633148	0.33344		0	591	1.069467993	18-12	1.06966793
Timber Wolf	Worlds of fun Kansas city	Missouri	wood	Sit down	0.3325	0.3786	0.77976		0.225	0.584051	0.009		0	0.591	1.066343506	$4.466-13$	1.066333306
Wodan Timbu E	Europa Park Rust	Baden Wuert	Wood	Sit down	0.5619		0.68872			0.939464	0.09261		0		1.063761141	66-13	1.06376141
Manta	SeaWorld orle orlando	Florida	steel	Flying	0.616	0.4631	0.58693	0.583837726	0.332	0.741996	0.42794		8881343	0.704	1.056712193	1.22E-09	1.056712
Silver Bullet	Knott's Berry F Buena Park	California	steel	Inverted	0.6504	${ }^{0.4352}$	0.52542		0.307	0.709769	0.46292		㖪		99079	2-05	
Storm Runne	Hersheypark Hershey	Pennsylvania S	steel	sit dow	0.6771	0.8463	0.38181	4554	. 696	0.031753	0.5445	0.808426206	78	0.51	1.081499104	1036362886	
wild one sur	Six Flags Amel Upper Mariboin	IMaryland	wood	Sit down	0.3169	0.3786	0.7353		0.186	0.406545	0.34344		0	0.591	1.044720854	2.812-12	1.044720854
nerre de 2 P	PParc Asterix Plally P	Picardie	wood	Sit Down	0.3169	0.3502	0.74439			0.518885	0.3384		\bigcirc		1.042039743		1.042039743
Smiler	Alton Towers Alton	Staffordshire,	steel	Sit down	0.129	0.3729	0.70144	0.997882148	0.24	0.799272	0.62519		0.983391479	0.591	1.075203879	0.052034391	1.023169887
Balder	Liseberg Gothenb	Vastra Gotala W	Wood	Sit down	0.4706	0.4604	0.62502	0		0.543195	0.40628	21	0	0.591	1.015933574	4.05E-11	574
Thur	VDisneyland Re Marne la vallelle		steel	Sit down	0.129	0.0792	0.88162		0.016	0.98028	0.26037		0	91	1.012062004	03E-13	1.012062004
terburn	Carowinds Charlotte	North Carolins	Steel	Inverted	0.4328	0.6188	0.47957	0.831258716		0.809567	0.4889		0.491792348		1.005917857	14E-06	1.005916715
w Rev	iSix Flags Magiv valencia	Califoria	steel	Sit down	0.4328		0.61175	489		0.575993	0.84695				1882029	01336846	
Outaw	Silver Dollar C Branson	Missour	wood	Dow			0.47737			2521	0.49195			0.591	1.0051385	4.288-07	
Talon	Dorney Park \& Allentown	Pennsylvania 5	steel	Inverted	0.5855	0.5177	0.52139	0.583837726	0.374	0.501168	${ }^{0.46522}$	0.077901032	0		1.00116423	.68E-10	1.001164423
Quime	La Feria Chap Mexico	Mexico	Steel	Sit dow	0.4177	0.3786	0.6085	0.395734554		0.554856	0.74797		0	1	0.979693079		
Rock'n' Roller D	Disneyland Pa Marne la	Elle-de-France s	steel	Sit dow	0.1809	0.4907	0.59815	0.395734554		0.102668	0.8859		277633	0.591	1.019752988	0.040890924	0.978862064
Batwing	Six Flags Amel Upper Ma	Maryland	stee	Flying	0.4477	0.2943	0.58205	0.729537426		0.992632	0.99067		991	0.704	0.975816884	2.97E-05	73
Firehawk	kings sland kings mill	Ohio	steel	, ing			0.58205	0.729537426		0.559702	0.49067		2112	0.704	0.970532199	6.99E-06	0.970526108
Goudurix	Parc asterix Plailly P	Picardie	steel	Sit down	0.4698	0.4631	0.52321	0.897759767	. 301	0.158522	0.46418		0.986923632	0.591	1.018393114	5212739	.966265376
edor	rsix Flags New Agawa		steal	sit down	0.4024		0.57688	0.395734554		0.533372	0.43366		0	,	0.940386758	1.38E-10	
Hydra the Rev D	Dorney Park \& Allentown P	Pennsylvania S	steel	sit down	0.2935	0.3786	0.5449	0.897759767	0.2	0.741996	0.45184		. 80385582	0.591	0.92414193	00324792	0.923816401
Furius Baco	Portaventura Salou ${ }^{\text {T }}$	Tarragona	steel	Wing	0.0185	0.924	0.43364	0.041137489		0.04591	0.74797		614	0.674	0.92072517	0.00019014	0.92053503
Bandit	Movie Park Ge Bottrop	North	Wood	Sit Down	0.264	086	0.64811		0.153	0.226901	0.39315		\bigcirc	0.591	0.909672592	2.26E-11	0.909672992
Colorado Adve P	¢Phantasialand Bruh	North Rhine-vs	steel	Sit down	0.2193	0.0058	0.7742	0		0.846957	0.32145		0	0.591	0.906903581	1.33-12	0.906903581
stic Timber K	erkings sland Mason	Ohio	wood	Sit down	0.4039	0.3786	0.56256		0.242	0.475518	0.418		-	0.591	0.909938751	1.988-10	
Viper sum	Six Flags Great Gurnee	Illinois	wood	sit dow	0.3325	0.2943	0.612		0.145	0.346704	0.41369	0.104230641	0	0.591	0.8983072	5.63 E -	28
Racer	Kings sland kings Mills	Ohio	wood	Sit dow	0.2396	0.3786	0.60119	0		0.475518	0.41983	0.034618732	0	0.591	0.894192449	118-11	
rent	Hersheypark Hershey	Pennsylvania 5	steel	Sit dow	0.4915	0.5177	0.40921	0.831258716		0.191286	0.52901	0.88837495	26	0.591	0.933097179	05003435	0.883062829
Grizzly	Californi's Gr Santa Cla	Califoria	wood	Sit down	0.2625	0.4352	0.55863	0		0.771843	0.44804		0	0.591	0.882456196	2.19-10	0.882456196
1 Thrott	Six Flags Magiv valencia	Califoria	steel	Sit down			0.2759	0.192891422		0.226901	0.2993		95	0.591	0.873949103	21E-10	0.873499103
ker	Six Flags Disco vallejo	Califoria	steel	Sit down	0.3325	0.3786					0.45154		0	0.591	0.867922071	3.07E-10	0.86792207
Medusa 5 teel s	Six Flags Mexi Mexico city	Mexicocity	steel	Sit down	0.3169	0.5177	0.49159	0.395734554		0.482804	0.48216		0	0.591	0.86688107	1.22E-09	0.866881069
swarm	Thorpe Park Chertsey	Surrey, Engla	Stee	wing	0.5333	0.4907	0.36629	0.729537426		0.191286	0.62519		361129	0.674	0.897308022	. 32491985	0.864816038
perman: Ess S	(SSix Flags Magiv valencia	California	steel	sit down	0.9965	0.9803	0.08218		0.974	0.004075	0.62519		0	0.591	0.847358376	7.60E-07	0.8473577616
Tower of Ter	crieamworld Coomera	Queensland	steel	Sit down	0.9935		0.08218		0.974	0.004075	0.62519	0.808426206	0	0.591	0.846883321	.600-07	D.84688251
Boardwalk bul K	1 K mah Boardv Kemah	Texas	wood	Sit dow	0.3013	0.3221	0.55495		0.208	0.521852	0.46613	0.14	0	0.591	0.845747033	18-10	.884547033
Poltergeist sur	Six Flags Fiestisan Anto	Texas	steel	Sit Down	0.1725	0.5698	0.41058	0.583837726		0.128914	0.62519		99476	0.591	0.856440039	0.010907392	45532647
Blue Hawk	Six flags over Austell	Georgia	Steel	sit down	0.4986	0.3502	0.42076	0.729537426		0.158522	0.5224		0.896566308	0.591	0.87561824	14247834	
Star Wars Hyp	- Disneyland Re Marne la vallell	Elle-de	steel	Sit down	0.3715	0.145	0.56675	0.395734554		0.518085	0.43942		0.222418089	0.591	0.830029861	5.31-10	0.830028861
Batman - The IS	ISix Flags New Agawam	Massachusetts ${ }^{\text {S }}$	steel	Sit down	0.4684	0.4352	0.38181	0.729537426		0.638584	0.5459		69773	0.591	0.822115812	.011-.06	20
Renegade	valleytair! Shakopee	Minnesota	Wood	Sit down	-	0.3305	0.52219		0.205	0.475518	0.46476		0	0.591	0.821205018	5.57-10	${ }^{0.821205018}$
Prowler	World of fun kansas Cil	Missouri	wood	Sit down	0.3505	0.3277	0.51168		0.17	0.709769	0.47074		0	0.591	0.820938732	7.28 -10	. 820938873
Time Traveler S	Silver Dollar C Bran	Missouri	steel	Sit down	0.3325	0.3026	0.4970	54	0.197	0.449702	0.47906		66	0.591	0.817627955	2.06-09	. 8.81727995
tman The Ris	Risix Flags Great ackson	New Jerse	steel	Inverted	0.3715		0.4072	0.729537426		0.226901	0.5301				0.825757074	19345377	0.806411697
Goliath	Six Flags fiest San Antor	Texas	steel	Inverted	0.3715	0.2943	0.4072	0.729537426	0.14	0.475518	${ }^{0.5301}$		28309		0.804224079	4.99E-05	803979198
Altair	Cineitt? Wo Rome	Rome	steel	Sit down	0.397	0.3729	0.45868	0.979569885		0.462521	0.50088		0	0.591	0.801618813	2.83E-09	0.80161881
Crazy Coaster L	Loca Joy Holid Yonghua	Chongaing	steel	Sit down	0.397	0.3729	0.4562	0.979569885		0.460997	0.5028		-	0.591	0.79925956	3.01-09	0.799259543
velikolukskiy	Wonder Islanc Saint Petersbis		steel	Sit down	0.3947	29	0.4598	0.979569885		0.460861	0.5024		0	0.591	0.79838193	3.03E-09	0.798381927
Mammut Eider	ErebnisparkT Cleebronn B	Baden Wuert W	wood	Sit down	0.32	0.4604	0.44264	0		0.452639	0.5099		0	0.591	0.798373793	4.26E-09	0.798373789
Batman: Arkhe P	EPargue Warne San Martin de N	Madrid	Steel	Inverted	0.3775	0.286	0.40926	0.729537426		0.128914	0.84695		0.924350557		0.859487325	1211618	0.79827507
Apocalyse	Six Flags amel Upper Mariboin	Inayland	steel	Standup	0.3325	0.4352	0.46423	0.192891422	0.197	0.475518	0.49772		0.092814903	0.24	0.797715578	2.46E-09	0.797115576
Fluch von NovH	Hansa Park Sierksdorf sass	Schleswig-Hol	Iteel	Sit down	0.5619	0.6	0.30072	0.041137489		0.365173	0.5907	88837495	\bigcirc	0.591	0.796178238	1.61-07	0.796178077
Stealth	Thorpe Park chersey	Surrey, Englans	steel	Sit down	0.8707	0.8959	0.0933	0		0.23739	0.7885	06	\bigcirc	591	0.795699168	5E-05	0.79566696
Batman The Ris	kisix Flags Greal Gurnee	1 llinois	steel	Inverted	0.3325	0.2943	0.4092	.729937426		0.475518	0.5291		09		0.794565679	4.49E-05	0.794520799
Ravine Flyer II	IWaldameer Erie	Pennsylvania	Wood	Sit down	0.1809	0.4907	0.46423		0.362	0.226901	0.49772	0.210		91	0.790592904	2.45-09	0.790592902
Great White	SeaWorld San San	Texas	steel	Inverted	0.3947		0.37145	0.729537426	. 151	0.475518	0.68893		09		0.787795352	5.822-05	. 7877377108
Batman The Ris	kisix Flags Magiv Valenci	Califor	steel	Inverted	0.3715	0.2943	0.40921	0.729537426		0.475518	0.2993				8727053		669
Batman The Ris	kisix Flags over Arlingto	Texas	steel	Inverted	0.3715	0.2943	0.40921	0.729537426		0.475518	0.2993		0.614228399		0.787270539	4.49-.05	787225699
Batman The Ris	kisix Flags st. Lo Eureka	Missouri	steel	Inverted	0.3775	0.2943	0.4072	0.729537426		0.475518	0.2993		0.614228309	1	0.78534727	4.99E-05	0.7853024
Temple of the P	Phantasialand Bruhl	North Rhine-vs	Steel	Sit Down	0.0068	0.0022	0.7043	0		0.983125	0.3612			0.591	0.777303448	$5.771-12$	0.77733348
Snow Mounta	Happy Valley Nanshan	Shenzhen, ©u:	steel	Inverted	0.4684	0.4324	0.2768	0.583837726	0.324	0.24801	0.74797		0.699433264		0.766901794	1894	0.776582849
Superman - Ul	ISix Flags Greai Gurnee	Illinois	steel	Flying	0.3793	0.3221	0.43617	0.192891422	0.254	0.86734	0.51367		0.032750153	O4	0.766135858	5.03E-09	0.766135853
Goliath	Six Flags New Agawam	Massachusetts	steel	Inverted	0.8365	0.6977	0.07795	0.395734554	0.683	0.241861	0.62519	0.808422206	0.415879373		0.755697347	8.77-07	0.75569647
Stunt fall	Pargue Warne San Martin de N	Madrid	steel	Inverted	0.8338	0.6977	0.07795	0.395734554	0.683	0.241861	0.62519	0.808426206	0.415879373		0.75520412	8.77E-07	0.755233243
Mr. Freeze Res	eis Six Flags over Arington T	Texas	steel	Sit down	0.8969	0.7773	0.09148	0.041137889		0.236214	0.70969		0	0.591	0.754959585	3.40E-05	0.75492556
Mr. Freeze Res	e: Six Flags st. Lo Eureka	Missouri	steel	Sit down	0.8969	0.773	0.09148	13789		0.236214	0.70969		\bigcirc	0.591	0.754959585	3.40E-05	0.75492556
Flight of fear	Kings sland kings Mills	Ohio	steel	Sit down	0.1417	0.407	0.41058	0.583837726		0.060566	0.62519		0.924350557	0.591	0.79548236	0.047843917	0.747638443
Storm Chaser K	Kentuck King Louisville K	Kentucky	steel	Sit Down	0.3325	0.3502	0.42131	0.395734554		0.305081	0.19764	0.596	0.355487981	591	0.747613046	1.91-08	0.747613027
Fly the Great N	Morey's Piers wildwood	New Jersey	steel	Inverted	0.4477	0.4352	0.26843	0.729537426		0.518085	0.6996		0.58023695		0.745584602	1.66E-05	0.745568842
cyclone	Lakeside Amu Denver	colorado	wood	Sit down	0.1809	0.4352	0.43672		0.145	0.475518	0.51336	0.071901	0	0.591	0.742560411	4.96E-09	0.742560906
Apocalypse th	Six Flags Magit valencia	California	Wood	Sit down	0.2935	0.297	0.45791		0.182	0.867344	${ }^{0.50131}$		0	0.591	0.7410931106	2.88E-09	0.741093103
Stampida P	Portaventura Salou	Tarragona	Wood	Sit down	0.2097	0.1903	0.5295	,		0.305081	0.46262		0	0.591	0.739805493	5.06-10	0.739805493
Phoenix	Knoebels Amelysburg	Pennsylvania	wood	Sit down	0.167	0.1669	0.54543		0.108	0.475518	0.45154		0	0.591	0.736855	3.07E-10	0.736854999
Flight of Fear K	Kings Dominic Doswell	Virginia	steel	Sit down	0.1417	0.407	0.41458	0.583837726		0.668882	0.62519		4672609	0.591	0.733514566	7.64E-07	0.733513802
Doble Loop s	Salitre Magico Bogota	Cundinamarcas	steel	Sit down	0.0597	0.4631	0.42778	0.192891422		0.452724	0.50992		0	0.591	0.724229947	4.24E-09	0.72422
10 Inversion R C	Chimelong Pai Panyu	Guangzhou, Gis	, istel	Sit down	0.32	0.1669	0.43364	0.979569985		0.241861	0.51511		0.998309055	0.591	0.774360107	0.052372919	0.721987188
Colossus	Thorpe Park chersey	Surrey, Englans	steel	Sit down	0.32	0.1669	0.43364	0.979569885		0.241861	0.51511		0.998309055	0.591	0.774360107	0.052372919	0.721987188
Flight of the P	Harborland Beilun	Ningbo, Shejics	Steel	Sit Down	0.3458	0.286	0.41556	0.939360471		0.435948	0.52539		0	0.591	0.711538806	8.522-09	0.711539797
Wicked ${ }^{\text {W }}$	C Cedar Point Sandusky	Ohio	steel	Inverted	0.8913	0.8075	0.0054		0.72	0.183167	0.75863	0.80	\bigcirc		0.711365124	0.000306701	0.711058424
Batman the Ris	isix Flags Mexi Mexico Cit	Mexico city	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.711002631
Desafio	Pargue de la CTigre	Buenos Aires 5	Steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.710026031
Firewhip	Beto Carrero VPenha	Santa catarina	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.710026031
Limit	Heide-Park So soltau	Lower Saxony S	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.710026031
Mind Eraser	Six Flags Amei Upper Martboin	Maryland	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	${ }^{0.596}$		0.788712119	1	0.717296446	0.007270416	0.7110026031
Mind Eraser	Elith Gardens Denver	Colorado	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.710026031
mp-xpress	Movie Park GE Bottrop	North Rhine-vs	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.710026031
Raptor	Fantasilandia Santiago	Metropolitan IS		Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.710026031
Riddler Reven s	Six flags New Agawam	Massachusetts	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	1	0.717296446	0.007270416	0.711026031
Saw-The RideT	EThorpe Park chertsey	Surrey, Englan Se	steel	Sit down	0.3325	0.4352	0.31783	0.395734554		0.305081	0.58097	0.913	0.355487981	0.591	0.708600584	1.23E-07	0.708600461
Ninia sur	Six flags Magivivalencia	California	steel	Suspended	0.0636	0.4352	0.43672	0		0.226901	0.51336		0	0.587	0.708326774	4.966-09	0.70832679
Flight Deck	Canada's Won Vaughan	Onterio	steel	Inverted	0.4047	0.286	0.2914	0.729537426		0.212336	0.596		0.845338176		0.722959052	0.02463167	0.698315885
Nemisisi inerrt	Thorpe Park Chertsey	Surrev, Englans	steel	Inverted	0.295	0.2353	0.34408	0.583837726		0.329905	0.62519		0.555666296		0.69738331	8.50E-06	0.697329805
Abismo	Parque de Atr Madrid	Madrid	steel	Sit down	0.6802	0.6896	0.11967	0.192891422		0.060566	0.2993		0.43261198	91	0.69959208	1.93E-07	0.695951887
vertical veloc s	Six Flags Great Gurnee	Illinois	Steel	Inverted	0.8168	0.7773	0.0271	0		0.193833	0.78879		0	1	0.694662198	0.00019726	0.694269938
Kong	six Flags Disco vallejo	Califoria	steel	Sit Down	0.4047	0.286	0.2914	0.729537426		0.272856	0.596		0.788712119	0.591	0.689025598	0.007270416	0.68175182
Giant Dipper s	Santa Cruz Bei Santa Cruz	Califoria	wood	Sit down	0.1156	0.4352	0.39275		0.08	0.406545	0.58837		0	0.591	0.681712811	1.53E-08	0.681712795
Kawazemi	Tobu Zoo Park Minami	Saitama	steel	Sit down	${ }^{0.3458}$	0.3729	${ }^{0.34846}$		0.244	0.060566	0.56355	0.361068666	0	0.591	0.681656079	4.74E-08	0.6816565031
Piraten	Djurs Sommer Nimtotte	Midtiyland	steel	Sit down	0.3458	0.3729	0.38846		0.244	0.064157	0.56355	0.419128721	0	0.591	0.681656079	4.74E-08	0.681656031
el Venom	Valleyfar! Shakopee	Minnesota	steel	Inverted	0.8168	0.7435	0.0271		0.674	0.193833	0.78879	0.8084262	0		0.681157302	. 00019726	0.689960042
Giant Dipper Whizer	${ }_{\text {Belmant }}$ Belmont Park San Diego	Californ	Sooel	Sit Down						0.41	0.54459 0.4675		\bigcirc		0.676602707		0.676602687

Raven	Holiday World	Santa Claus	Indiana	Wood	Sit Down	0.1809	0.2405	367	0		0.226901	0.51336		0	0.591	0.666079225	4.96E-09	0.66607922
Scream	Scandia Amus	Ontario	California	Steel	wn	2548	0.2943	0.38181	0	0.14	0.441073	0.54459		0	0.59	0.65622708	2.02E-08	0.656227068
Titan Cascabel	ISelva Magica	Guadalajara	Jalis	Steel	own	0.1469	0.4352	0.35465	0		0.398411	003		0	0.591	0.65442568	O5E-0	0554425648
Texas Tornade	Wonderland A	Amarillo	Texas	Steel	Sit Down	09	0.6854	0.23899	0.19289	0.145	0.327125	0.6258		0	0.591	0.652241401	1E-07	0.65224062
Alpina Blitz	Nigloland	Dolancourt	Champagne-A	Steel	Sit Down	. 37	0.339	0.31701	0		211	0.49067		0	0.591	0.645781368	E-09	0.645781367
Flight Deck	California's Gr	Santa Clara	California	Ste	Inverted	0.3	0.2943	0.29127	0.395734554	0.20	31	0.59607		227	1	0.64069322	05E-07	0.640693024
Eurosat Can Ce	Eur	Rust	Baden Wuertt	Steel	Sit Down	75	0.0405	0.49834	0		31	0.29993		0	0.591	0.639516582	7.81E-13	0.639516582
Black Mamba	Phantasialand	Bruhl	orth Rhine-v	Steel	Inverted	93	0.286	0.35998	0.583837726	0.1	92	0.29993		0	1	0.62930008	7.81E-13	. 2930
Timberhawk: 1	Wild Waves Tt	Federal Way	Washington	Wood	own	169	2943	0.38181	0		0.415147	0.54459		0	0.591	0.62498104	2.02E-0	0.62498102
Demon	Six Flags Great	Gurnee	Illinois	Stee	ow	14	0. 2943	0.25847	26	0.197	704	0.61472	0.116787919	1799	0.591	0.623429375	5.28E-06	2342
Demon	California's Gr	Santa Clar	Californi	Steel	Do	382	43	0.25847	0.583837726	0.197	5704	0.6	0.11678791	0.539711799	0.591	39	5.28E-06	0.619585113
Desert Race	Heide-Park So	Soltau	Lower Saxony	Steel	Down	42	11	0.25912	0		0.029537	0.61436		0	0.591	0.615286095	4.67E-07	0.61528
Sky Wheel	Skyline Park	Bad Worisho	Bavaria	steel	Sit Down	0.6802	16	0.01524	0.192891422		753	0.88559		8023695	0.591	0.654623844	0.040816797	0.613807047
Coaster T	Pruyallup Fair	Puyallup	Washington	Wood	Sit Down	37	2943	0.39549	0		6704	0.53681		0	0.591	0.608145797	2E-08	0.608145783
Nessie Superr	Hansa Park	Sierksdorf	Schleswig-Hol	Steel	Down	0.2193	0.2697	0.33615	0.041137489		9702	0.57055		2783114	S 1	283	6.50E-08	0.594032765
Iron Dragon	Cedar Point	Sandusky	Ohio	Steel	Suspended	0.1535	0.0733	0.43672	0		75518	0.51336		0	0.587	0.592179884	4.96E-09	0.59217988
Big Thunder M	Disneyland	Anaheim	California	Steel	Sit Down	0.3638	0.0014	0.40125	0		0.867344	0.53353		0	0.591	0.591272381	1.23E-08	0.591272369
V2: Vertical VEs	ESix Flags Disco	Vallejo	California	el	Down	0.6719	0.6854	0.02271	0		0.193833	0.74879		0	0.591	0.588125377	0.00019726	0.587928116
sky Scream	Holiday Park	Hassloch	Rhineland-	S	Sit Down	0.6719	0.6188	0.0401	0.041137489		0.060566	0.73891	. 80842620	. 92814903	0.591	0.587799445	0.000126549	0.587672896
Judge Roy Scres	ESix Flags Over	Arlington	Texas	Wood	Sit Down	0.1216	0.1669	0.40097	0	0.08	0.226901	0.53369		0	0.591	0.585925308	1.24E-08	0.585925296
Nemesis	Alton Towers	Alton	Staffordshire,	steel	Inverted	0.0123	0.2943	0.31441	0.583837726	0.277	0.158522	0.09261		0.759365602	1	0.586131011	0.003277632	0.582853379
Bat	Kings Island	Kings Mills	Ohio	Steel	Suspended	0.167	0.3221	0.31519	0		0.406545	0.58247		0	87	0.577908845	1.11E-07	0.577908734
Manta	SeaWorld San	San Diego	California	Steel	Sit Down	0.0014	0.1246	0.43672	0	0.045	0.475518	0.29993		0	0.591	0.55125481	7.81E-13	0.55125481
El Toro	Freizeitpark P\|	Lengenfeld	Saxony	Wood	Sit Down	0.1844	0.1808	0.32231	0		0.378479	0.57842		0	0.591	0.534517274	9.26E-08	0.534517181
Blue Streak	Cedar Point	Sandusky	Ohio	Wood	Sit Down	0.167	0.0733	0.37037	0	0.108	0.346704	0.55109		0	0.59	0.53307409	2.71E-08	0.533074063
Corkscrew	Valleyfair!	Shakopee	Minne	Stee	Sit Down	0.2171	0.2943	0.21547	5734554		0.226901	0.63917		32616198	0.5	0.529909141	1.62E-0	0.529907522
Monterooma':	:Knott's Berry F	Buena Park	California	Steel	Sit Down	0.6613	52	0.03476	0.041137489		0.009794	0.74194		0.304672609	0.5	0.528713258	0.00014503	0.528568228
Railllazer	California's Gr	Santa Clara	California	Steel	Sit Down	0.3793	02	0.18218	395734554		0.292117	0.65811	0.808426206	0	0.5	0.523841547	3.34E-06	0.523838206
Spatiale Exper	Nigloland	Dolancourt	Champagne-A	Steel	Down	0.0909	0.0405	0.38856	0		0.599978	0.62519		0	0.5	0.522361632	7.60E-07	0.522360872
Mine Blower	Fun Spot Ame	Kissimmee	Florida	Wood	Sit Down	0.2024	0.1855	0.29901	0.041137489	0.147	0.364118	0.59167	0.309158993	0	0.59	0.519344728	1.68E-07	0.51934456
Big Loop	Heide-Park Re	Soltau	Lower Saxony	steel	Sit Down	0.32	0.0622	0.30585	837726		0.368331	0.58778		0	0.591	0.51150523	1.41E-07	0.511505089
oblivion	Alton Towers	Alton	Staffordshire,	steel	Sit Down	0877	25	0.08039	0	0.696	0.128914	0.62519	128	0	0.591	0.489406288	.60E-07	0.489405528
Star Mounta	Beto Carrero V	Penha	Santa Cata	Steel	Sit Dow	1469	3	0.32788	92891422		0.381907	0.57526		0	0.591	0.486718115	03E-08	. 486718035
Corkscrew	Cedar Point	Sandusky	hio	teel	Steel	171	205	0.23899	95734554		0.475518	258		66	0.2	0.485262096	82E-07	0.485261314
Cedar Creek	Cedar Point	Sandusky	hio	steel	Steel	229	0.1057	0.36548	0		0.783105	0.55387		0	0.2	0.472418908	07E-08	0.47241887
Terminator Sa	Six Flags Magii	Valencia	alifornia	Steel	Wood	0011	0.9039	0.04134	0		0.867344	0.7382		0	0.2	.470433971	.000122588	0.47031138
Road Runner Es	ESix Flags Fiesti	San Antonio	Texas	Steel	Sit Down	134	0.0219	0.32788	0	0.088	0.668082	0.57526		0	0.591	0.462828977	8.03E-08	0.462828897
Katapul	Hopi Hari	Vinhedo	Sao Pal	Steel	Down	0.6028	0.3786	0.02882	0.041137489		0.197597	0.74532	0.41	0	0.591	0.453415497	0.000168783	0.45324671
Invertigo	Kings Island	Kings Mills	Ohio	Steel	Sown	0.5619	0.2943	0.05492	0.395734554		0.226901	0.88559		0.432616198	0.591	0.489188217	0.040800798	0.44838742
Comet	Walygator Par	Maizier	aine	Steel	Sit Down	0.1718	0.0792	0.2122	34554		0.128914	0.64104		23695	1	0.443953549	1.77E-05	0.443935806
Atlantica Supe	Europa Park	Rust	Baden Wuer	Steel	Sit Down	0.32	0.286	0.08848	0		0.92854	0.71139		0	0.591	0.392080888	3.67E-05	0.392044154
Green	Warner Bros. 1	Gold Coast	Queensland	steel	Sit Down	0.397	0.0886	0.14215	0.192891422		0.267447	0.68087		0	0.591	0.38803482	9.31E-06	0.388025514
Wild Thing	Wild Waves Tr	Federal Way	Washington	Steel	Sit Down	0.1469	0.0733	0.13543	0.395734554	0.077	0.060566	0.68469		0.759365602	0.591	0.379090316	0.003288684	0.375801632
Joker	Six Flags Great	Gurnee	Illinois	Steel	Wing	0.4843	0.0478	0.05548	0.729537426	0.045	0.128914	0.73016	0.596361824	0.924350557	0.674	0.412766546	0.047928565	0.364837981
Ranier Rush	Puyallup Fair	Puyallup	Washington	Steel	Sit Down	0.0776	0.1669	0.17689	0.041137489		0.288851	0.66112		0	0.591	0.359430614	3.83E-06	0.359426787
Backlot Stunt	(Kings Island	Kings Mills	Ohio	Steel	Sit Down	0.0169	0.0733	0.21778	0	0.007	0.075749	0.63786		0	0.591	0.34404902	1.34E-06	0.344047676
Boomerang	Six Flags Mexi	Mexico City	Mexico City	steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.591	0.411777585	0.068243641	0.343533944
Boomerang	Walibi Rhone-	Les Aveniere	Auvergne-Rhc	steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.591	0.411777585	0.068243641	0.343533944
Boomerang	Fantasilandia	Santiago	Metropolitan	Isteel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.591	0.411777585	0.068243641	0.343533944
Boomerang	Parque de la C	Tigre	Buenos Aires	Steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.591	0.411777585	0.068243641	0.343533944
Boomerang	Elitch Gardens	Denver	Colorado	Steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.591	0.411777585	0.068243641	0.343533944
Boomerang	Six Flags Fiest:	San Antonio	Texas	steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.591	0.411777585	0.068243641	0.343533944
Boomerang	Freizeit-Land	Geiselwind	Bavaria	steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.591	0.411777585	0.068243641	0.343533944
Boomerang	Worlds of Fun	Kansas City	Missouri	steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.59	0.411777585	0.068243641	0.343533944
Boomerang	Six Flags St. Lo	Eureka	Mis	steel	Sit Down	0.4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.59	0.411777585	0.068243641	0.343533944
Boomerang CCS	Csix Flags Disco	Vallejo	California	Steel	Sit Down	4588	0.2148	0.0468	0.395734554		0.372193	0.94155		0.304672609	0.59	0.411777585	0.068243641	0.343533944
Flashback	Six Flags New	Agawam	Massachuse	el	Sit Down	4588	0.2148	0.0468	5734554		0.372193	0.94155		0.304672609	0.59	0.411777585	0.068243641	0.343533944
Revenge of th	Universal Stuc	Universal City	California	Steel	Sit Down	0.0153	. 0733	0.20545	0		0.475518	0.64487	0.071901032	0	0.591	0.331852166	1.84E-06	0.331850324
Force One	Schwaben Par	Kaisersbach	Baden Wuertt	Steel	Sit Down	0.129	0.0792	0.16935	0		0.011872	0.1562		0	0.591	0.291338608	4.47E-13	0.291338608
HeiBe Fahrt	Wild- und Frei	klotten	Rhineland-Pal	steel	Sit Down	0.0527	0.0172	0.17071	0		0.158522	0.66463	0.040560333	0	0.591	0.287533602	4.48E-06	0.28752912
Winjas	Phantasialand	Bruhl	North Rhine-V	steel	Sit Down	0.0516	0.0886	0.12847	0	0.041	0.259012	0.68865		0	0.591	0.274943218	1.32E-05	0.27493001
Adrenaline Pe	Oaks Amusem	Portland	Oregon	steel	Sit Down	0.1278	0.1669	0.05892	0.395734554		0.216151	0.7282	0.888	0	0.59	0.261434902	7.82E-05	0.26135668
SpeedSnake F	Fort Fun Aben	Wasserfall	North Rhine-V	Steel	Sit Down	0.0826	0.0405	0.07069	0.192891422		0.060566	0.72151		0.432616198	0.591	0.253172271	5.81E-05	0.25311418
Half Pipe	Elitch Gardens	Denver	Colorado	Steel	Sit Down	0.32	0.1346	0.00578	0		0.475518	0.62519		0	0.59	0.242887879	7.60E-07	0.24288711
Pandemoniurs	Six Flags Over	Arlington	Texas	Steel	Sit Down	0.0369	0.0055	0.09918	0	. 00	0.39793	0.7053		0	0.591	0.210133757	2.79E-05	0.210105821
Bocaraca	Parque de Div	La Uruca	San Jose	Steel	Sit Down	0.0826	0.0405	0.07069	0.192891422		0.223405	0.72151		0	0.591	0.209910651	5.79E-05	0.209852759
Super Tornadc	Zoo Safari- uni	Stukenbrock	North Rhine	Steel	Sit Down	0.0826	0.0405	0.07069	0.192891422		0.223405	0.72151		0	0.591	0.209910651	5.79E-05	0.209852759
Tornado	Bosque Magia	Guadalupe	Nuevo Leon	Ste	Sit Dow	0.0826	0.0405	0.07069	0.192891422		0.223405	0.72151		0	0.591	0.209910651	5.79E-05	0.209852759
Whirl	Wor	Saint	Saint Petersbl	Stee	Sit Down	0.0826	0.0405	0.07066	0.192891422		0.223382	0.72153		0	0.591	0.209874462	5.79E-05	0.209816514
Pandemoniurs	Six Flags Fiest:	San Antonio	Texas	Steel	Sit Down	0.0229	0.0055	0.09918	0		0.240964	0.7053		0	0.591	0.206080703	2.79E-05	0.206052766
Taunusblitz	Taunus Wunds	Schlangenbad	Hesse	Steel	Sit Down	0.0183	0.0014	0.07929	0		0.389331	0.71662		0	0.591	0.184125515	4.65E-05	0.184079045
Sidewinder	Elitch Gardens	Denver	Colorado	Steel	Sit Down	0.0473	0.1669	0.02302	0.041137489		0.084165	0.29993		0.072894717	0.591	87	4.31E-12	0.1747792
Bullet Coas	Happy Valley	Nanshan	Shenzhen, Gu:	Steel	Sit Down	0.8506	0.9182		0	0.835	-0.015082	0.94155		0	0.591		0.068243637	
Journey to Atl	SeaWorld San	San Antonio	Texas	steel	Sit Down	0.3325		0.03317	0		0.948938	0.74285		0	0.591		0.000151045	
Montana Rusa	VulQano Park	Quito	Pichincha	steel	Sit Down	0.0047		0.07708	0.041137489		0.227343	0.71787		0	0.591		4.92E-05	
Montana Rusa	Salitre Magico	Bogota	Cundinamarca	Stee	Sit Down	0.1156		0.08427	0.192891422		0.102668	0.71378		0.322690282	0.591		4.09E-05	
Crazy Bird	Happy Valley	Dongli	Tianjin	Steel	Sit Down	0.32		0.08	0.192891422	0.24	0.234368	0.71139	0.988353054	0	0.591		3.67E-05	
OCT Thrust SSC	(Happy Valley	Hongshan	Wuhan, Hubeis	istee	Sit Down	0.8506	0.9182		0	0.83	0.327796	0.62519		0	0.59		7.60E-07	
Journey to Atl	SeaWorld San	San Diego	California	Steel	Sit Down	0.2935	0.1057		0	0.1	0.999632	0.018		0	0.591		4.46E-13	
Happy Angel	Wanda Theme	Harbin	Heilongjiang	Steel	Inverted		0.4098		0.831258716					0	1			
Timber Drop	Fraispertuis Ci	IJeanmenil	Lorraine	Steel	Sit Down	0.3013	0.0886		0.192891422		0.158522		0.975072731	0.2434804	0.591			

Appendix D: Survey Results for part 9

Q1: Height of Roller Coaster vs G Force of Roller Coaster
Mean score: 4.5

Options	Count	Proportion	
1Prefer Height the Most	17		27.42%
2	6		9.68%
3	3		4.84%
4	4		6.45%
5 same	12		19.35%
6	3		4.84%
7	1	-5	1.61%
8	4		6.45%
9 Prefer G force the most	12		19.35%
Total survey collected	62		

Q2: Height vs Speed
Mean score: 5.31

Options	Count	Proportion	
1 Prefer height	10		16.13%
2	3		4.84%
3	10		16.13%
4	2		3.23%
5	10		16.13%
6	1	-	1.61%
7	4		6.45%
8	7		11.29%
9 Prefer Speed	15		24.19%
Total survey collected	62		

Q3: Height vs Inversions

Mean score: 6.16

Options	Count	Proportion	
1 Height	7		11.29%
2	3		4.84%
3	4		6.45%
4	2		3.23%
5	8		12.9%
6	4		6.45%
7	8		12.9%
8	5		8.06%
9 Inversions	21		33.87%
Total survey collected	62		

Q4: Height vs Type
Mean score: 4.73

	Options	Count	Proportion
1 Height	11		17.74%
2	4		6.45%
3	10		16.13%
4	4		6.45%
5	10		16.13%
6	6		9.68%
7	5		8.06%
8	1	-11.61%	
9 Type	11		17.74%
Total survey collected	62		

Q5: Height vs Discomfort arise from G force

Mean score: 5.71	Count	Proportion	
Options	8		12.9%
1 Height	1	-1	1.61%
2	4		6.45%
3	3		4.84%
4	17		27.42%
5	3		4.84%
6	5		8.06%
7	7		11.29%
8	14		22.58%
9 Discomfort arise from G force	62		
Total survey collected			

Q6: Height vs Discomfort arise from Inversions
Mean score: 6.32

Options	Count	Proportion	
1 Height	5		8.06%
2	2		3.23%
3	5		8.06%
4	2		3.23%
5	10		16.13%
6	2		3.23%
7	8		12.9%
8	10		16.13%
9 Discomfort arise from Inversions	18		29.03%
Total survey collected	62		

Q7: G force vs speed
Mean score: 5.37

	Options	Count	Proportion
1 G Force	8		12.9%
2	3		4.84%
3	5		8.06%
4	4		6.45%
5	13		20.97%
6	6		9.68%
7	8		12.9%
8	4		6.45%
9 Speed	11		17.74%
Total survey collected	62		

Q8: G force vs Inversions
Mean score: 5.94

Options	Count	Proportion	
1 G force	3		4.84%
2	4		6.45%
3	4		6.45%
4	4		6.45%
5	14		22.58%
6	5		8.06%
7	9		14.52%
8	5		8.06%
9 Inversions	14		22.58%
Total survey collected	62		

Q9: G force vs Type
Mean score: 5

	Options	Count	Proportion
1 G force	10		16.13%
2	2		3.23%
3	8		12.9%
4	6		9.68%
5	12		19.35%
6	7		11.29%
7	2		3.23%
8	3	4	4.84%
9 Type	12		19.35%
Total survey collected	62		

Q10: G force vs Discomfort G Force
Mean score: 5.71

Options	Count	Proportion	
1 G force	6		9.68%
2	1		
3	4		1.61%
4	2		6.45%
5	18		3.23%
6	5		29.03%
7	13		8.06%
8	2		20.97%
9 Discomfort from G force	11		3.23%
Total survey collected	62		17.74%

Q11: G force vs Discomfort from inversions
Mean score: 6.44

Options	Count	Proportion	
1 G force	2		3.23%
2	3		4.84%
3	1		
4	2		1.61%
5	16		3.23%
6	4		25.81%
7	12		6.45%
8	6		19.35%
9 Discomfort from inversions	16		9.68%
Total survey collected	62		25.81%

Q12: Speed vs Inversions
Mean score: 5.65

Options	Count	Proportion	
1 Speed	5		8.06%
2	2		3.23%
3	5		8.06%
4	3		4.84%
5	19		30.65%
6	6		9.68%
7	4		6.45%
8	7		11.29%
9 Inversions	11		17.74%
Total survey collected	62		

Q13: Speed vs Type
Mean score: 4.39

	Options	Count	Proportion
1Speed	13		20.97%
2	4		6.45%
3	6		9.68%
4	6		9.68%
5	16		25.81%
6	5		8.06%
7	3		4.84%
8	3		4.84%
9 Type	6		9.68%
Total survey collected	62		

Q14: Speed vs Discomfort from G force
Mean score: 5.1

Options	Count	Proportion	
1 Speed	12		19.35%
2	4		6.45%
3	4		6.45%
4	1		1.61%
5	13		20.97%
6	5		8.06%
7	6		9.68%
8	10		16.13%
9 Discomfort from G force	7		11.29%
Total survey collected	62		

Q15: Speed vs Discomfort from inversions
Mean score: 5.37

Options	Count	Proportion	
1 Speed	7		11.29%
2	4		6.45%
3	3		4.84%
4	4		6.45%
5	19		30.65%
6	4		6.45%
7	4		6.45%
8	7		11.29%
9 Discomfort from inversions	10		16.13%
Total survey collected	62		

Q16: Type vs Inversions
Mean score: 5.23

Options	Count	Proportion	
1 Inversions	8		12.9%
2	3		4.84%
3	7		11.29%
4	3		4.84%
5	14		22.58%
6	8		12.9%
7	5		8.06%
8	2		3.23%
9 Type	12		19.35%
Total survey collected	62		

Q17: Type vs Discomfort from G force
Mean score: 4.84

Options	Count	Proportion	
1 Type	12		19.35%
2	5		8.06%
3	4		6.45%
4	2		3.23%
5	14		22.58%
6	5		8.06%
7	10		16.13%
8	2	4	3.23%
9 Discomfort From G force	8		12.9%
Total survey collected	62		

Q18: Type vs Inversions
Mean score: 4.63

Options	Count	Proportion	
1 Type	11		17.74%
2	8		12.9%
3	4		6.45%
4	1		
5	17		1.61%
6	5		27.42%
7	5		8.06%
8	5		8.06%
9 Discomfort	6		8.06%
Total survey collected	62		9.68%

Q19: Type vs Discomfort from Inversions
Mean score: 5.73

	Options	Count	Proportion
1 Type	9		14.52%
2	1	-	1.61%
3	1	-	1.61%
4	2		3.23%
5	16		25.81%
6	6		9.68%
7	9		14.52%
8	8		12.9%
9 Discomfort from Inversions	10		16.13%
Total survey collected	62		

Q20: Type vs Discomfort from Inversions
Mean score: 5.82

	Options	Count	Proportion
1 Type	5		8.06%
2	3		4.84%
3	5		8.06%
4	1		1.61%
5	15		24.19%
6	6		9.68%
7	8		12.9%
8	7		11.29%
9 Discomfort from Inversions	12		19.35%
Total survey collected	62		

Q21: Discomfort from Inversions vs Discomfort from G force
Mean score: 4.79

Options	Count	Proportion	
1 Discomfort from G force	10		16.13%
2	7		11.29%
3	4		6.45%
4	3		4.84%
5	17		27.42%
6	5		8.06%
7	3		4.84%
8	4		6.45%
9 Discomfort from Inversions	9		14.52%
Total survey collected	62		

